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WHAT ARE GRAPH 
ANALYTICS

Graphs represent interactions 
between people or things
Graph analytics are algorithms 
that extract information from a 
graph
Graphs tend to grow large, and 
often tend to exhibit a power-law 
degree distribution
Ø “6 degrees of separation”

Image	source:	Microsoft



WHY SHARED MEMORY?

Because of properties of the workload
• Little computation, mostly 

communication/synchronisation
• Data sets not so large, e.g., Twitter’s 

follower graph fits in memory of a single 
server [Sharma PVDLB’16]

• Future memory technologies will increase 
capacity: High-Bandwidth Memory/die-
stacking, storage-class memory

• Large-scale shared-memory systems 
implement a non-uniform memory access 
(NUMA) model Image	source:	www.semiengineering.com



WHAT IS NUMA?

Each CPU socket is connected to local 
DRAM memory
Inter-node links provide access to “remote” 
DRAM memory
Local links have higher bandwidth and lower 
latency than inter-node links
Difference is more pronounced for stores than 
for loads
In a program optimised for NUMA, CPU cores 
primarily access local DRAM
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GOAL

How to map graph analytics over immutable 
graphs onto a NUMA architecture while 
minimising execution time?
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PRELIMINARIES

Graph G=(V,E) where
V: set of vertex labels
E ⊆ V⨉V: set of pairs of vertices

Frontier F is a set of active 
vertices with F ⊆ V
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PRELIMINARIES

in-degree: #incoming edges
out-degree: #outgoing edges
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PRELIMINARIES

Directed graph: edges have a 
direction (source, destination)

Undirected graph: edges have 
no direction
if (u,v) ϵ E then (v,u) ϵ E
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PRELIMINARIES

Undirected graphs are 
commonly represented such that 
every edge occurs twice1

3
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5
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GRAPH ALGORITHMS



LABEL PROPAGATION

• Strongly connected components
• Initial label assignment of ”old” 

label, copied to “new” label

• Update rule: for (u,v) in E:
• new[v] = min(new[v],old[u])

• Copy “new” to “old” and repeat 
update phase until no more 
changes made
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LABEL PROPAGATION

• Strongly connected components
• Initial label assignment of ”old” 

label, copied to “new” label

• Update rule: for (u,v) in E:
• new[v] = min(new[v],old[u])

• Copy “new” to “old” and repeat 
update rule on all edges until no 
more changes made

1

3
24

5
0

old:	0
new:	0

old:	1
new:	1

old:	2
new:	2

old:	3
new:	3

old:	4
new:	4

old:	5
new:	5
old:	5
new:	0

old:	2
new:	1

old:	4
new:	1

no	change!

2

no	change!

3

Round	0



LABEL PROPAGATION

Further propagating the labels 
“4” and “5” held by vertices 4 
and 5 incurs no changes in 
the labels of other vertices
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LABEL PROPAGATION

Round 0 of propagating labels 
has finished
Copy “new” to “old” and go 
again…
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LABEL PROPAGATION

After round 1, label “0” has 
propagated to more vertices
We need to do one more 
round to ensure no further 
changes occur
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LABEL PROPAGATION 
WITH FRONTIER

Let’s return to the state at the 
end of round 0
If in any round the label did 
not change, then there is no 
point in trying to propagate the 
label again
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LABEL PROPAGATION 
WITH FRONTIER

Let’s return to the state at the 
end of round 0
Vertices 2, 4, 5 have changes 
in their label (old[v]!=new[v])
Frontier = {2, 4, 5}
Only vertices 2, 4 and 5 are 
visited in round 1
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LABEL PROPAGATION 
WITH FRONTIER

Let’s return to the state at the 
end of round 0
Vertices 2, 4, 5 have changes 
in their label (old[v]!=new[v])
Frontier = {2, 4, 5}
Only vertices 2, 4 and 5 are 
visited in round 1
In round 2:
Frontier = {1, 2, 4}
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LABEL PROPAGATION 
WITH FRONTIER

Let’s return to the state at the 
end of round 0
Vertices 2, 4, 5 have changes 
in their label (old[v]!=new[v])
Frontier = {2, 4, 5}
Only vertices 2, 4 and 5 are 
visited in round 1
In round 2:
Frontier = {1, 2, 4}
Nothing changes

0

1

3
2

5
0

old:	0
new:	0

old:	0
new:	0

old:	3
new:	3

old:	0
new:	0

old:	0
new:	0

old:	0
new:	0

Round	2	preparing

24

1



GRAPH ANALYTICS 
FRAMEWORKS



LIGRA

[Shun PPoPP’13]
Assume graph G=(V,E)
EdgeMap applies an operation F to each 
edge (u,v) ∈ E where u ∈ U and C(v) = 
true. It returns a frontier that contains all v 
where any call to F(u,v) returned true
VertexMap applies an operation F to each 
vertex v ∈ U and returns a frontier that 
contains v iff v∈ U and F(v) = true
In both cases, F may have side effects, 
e.g., updating properties for the vertices

size(U : frontier) : N
returns |U|

EdgeMap(G : graph,
U : frontier,
F : (vertex × vertex)  → bool,
C : vertex  → bool) : frontier

VertexMap(U : frontier,
F : vertex  → bool) : frontier



LABEL PROPAGATION 
IN LIGRA

writeMin is an atomic 
“fetch_and_min” operation
Like compare-and-set, returns true 
if destination is successfully 
modified

Source:	Shun	PPoPP’13



POWERGRAPH

[Gonzalez OSDI’12]
Similar concepts, presented differently
Vertices ‘activated’ by explicit call as 
opposed to recording frontier
Needs to maintain state on vertices and 
on edges
Distributed framework
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d1



PEGASUS

[Kang ICDM’09]
Similar concepts, presented differently
Uses connection between graphs and 
their adjacency matrix
Generalized matrix-vector multiplication 
captures ‘accumulation’ concept
Essentially says that graph algorithms 
may be represented as semi-rings



ELEMENTS OF HIGH-
PERFORMANCE 
GRAPH ANALYTICS



GRAPH ANALYTICS 
STRUCTURE
frontier F := …;

frontier newF := { };

for edge (u,v) ∈ E do

if u ∈ F then

if C(v) and op(u,v) then

newF = newF ∪ { v };

fi

fi

od

• op implements the update 
of vertex properties

• op, C are algorithm-specific
• op returns true if destination 

should be considered in the 
next round

• op(u,v) is usually of the 
form

new[v]=new[v]⊕old[v]
where ⊕ is a commutative 
and associative binary 
operation (reduction)

• C(v) checks convergence



CONVERGENCE

frontier F := …;

frontier newF := { };

for edge (u,v) ∈ E do

if u ∈ F then

if C(v) and op(u,v) then

newF = newF ∪ { v };

fi

fi

od

Shun PPoPP’13:
“The function C is useful in 
algorithms where a value 
associated with a vertex only 
needs to be updated once (i.e. 
breadth-first search).”
The paper also checks 
convergence for betweenness
centrality
Real usefulness depends on 
how the graph is traversed



GRAPH DATA 
STRUCTURES

• Compressed Sparse Columns (CSC)
• List incoming edges for each vertex
• “Backward” traversal
• “Bottom-up” traversal
• “Pull”
• “Vertex-centric”

30

Frontier: CSR allows to skip 
edges for inactive vertices (u∉F)

• Compressed Sparse Rows (CSR)
• List outgoing edges for each vertex
• “Forward” traversal
• “Top-down” traversal
• “Push”
• “Vertex-centric”

Pruning: CSC allows to skip edges 
for pruned vertices (C(v)=false)



CSR-BASED EDGEMAP

frontier F := …;

frontier newF := { };

for vertex u ∈ V do

if u ∈ F then

for vertex v ∈ out(u) do

if C(v) and op(u,v) then

newF = newF ∪ { v };

fi od fi od

• Checking frontier is 
compulsory: op(u,v) may be 
called only if u∈F

• Pruning is not compulsory: 
may call op(u,v) if 
C(v)=false 

• As op(u,v) is only a hand-
full of instructions, there is 
little benefit in using C(v) in 
CSR



CSC-BASED EDGEMAP

frontier F := …;

frontier newF := { };

for vertex v ∈ V do

if C(v) then

for vertex u ∈ in(v) do

if u ∈ F then

if op(u,v) then

newF = newF ∪ { v };

if not C(v) then break; fi

fi fi fi od od

• Pruning is highly effective in 
CSC

• Allows to early terminate 
visiting the in-edges of u

• Or skip in-edges alltogether



EVOLUTION OF 
FRONTIER SIZE

Algorithms exhibit one of three 
primary patterns:
• flat
• shrink
• grow then shrink

Source:	Shun	PPoPP’13



FRONTIER 
REPRESENTATION

“Sparse” frontiers
• Few bits set
• Queue of active vertex IDs 
“Dense” frontiers
• Many bits set
• Bitmap or array of booleans
Dynamically switch as frontier size 
changes
[Hong et al, PACT’11]



CSR-BASED EDGEMAP 
WITH SPARSE FRONTIER
frontier F := …; // queue

frontier newF := { }; // queue

for vertex u ∈ F do

for vertex v ∈ out(u) do

if C(v) and op(u,v) then

newF = newF ∪ { v }; // append

fi od od

• Reminder: dense frontiers:
for vertex u ∈ V do

if u ∈ F then

…

• Iteration over F is efficient 
when stored as a queue

• When F is stored as a 
queue, only CSR is efficient

• new frontier may contain 
duplicates!



BREADTH-FIRST 
SEARCH

Starting from a root vertex, 
identify a shortest path to all 
other vertices
Construct a spanning tree
-1 means parent unknown
In this case we start from 
vertex 2
Requires a frontier: all 
vertices that received a parent 
in the previous round
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BREADTH-FIRST 
SEARCH

”Top-down” traversal, “push”
Focus on out-edges

Old frontier:
New frontier: 
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BREADTH-FIRST 
SEARCH

”Bottom-up” traversal, “pull”
Focus on in-edges
Vertex complete as soon as 
parent updated

Old frontier:
New frontier:
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IMPACT OF CONVERGENCE
[Beamer, SC12]

Claimed	child:	parent[v]	updated	from	-1	to	a	vertex	ID
Failed	child:	parent[v]	updated	in	same	round	by	parent
Peer:	parent[v]	updated	in	same	round	by	sibling
Valid	parent:	v	was	encountered	in	a	round	prior	to	u

Bottom-up/pull	is	faster	in	the	middle	rounds
In	those	rounds,	many	vertices	are	active

round

round
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DIRECTION-
OPTIMISATION
d = (#active vertices + 
#active edges) / #edges

if d > 5% then
# dense frontier
if algorithm prefers

forward then
traverse CSR

else
traverse CSC

endif
else # d <= 5%

# sparse frontier
traverse CSR

endif

40

Programmer’s choice
Little is known to guide this
We	will	shed	some	light	on	this

…	work	in	progress

Requires storage of both 
CSC and CSR

[Beamer	SC’12]	[Shun	SPAA’13]



NUMA-AWARENESS



POLYMER

[Zhang PPoPP’15]
Remote access has higher 
latency, lower bandwidth than local 
access
Stores are more affected than 
loads
Designed a scheme using graph 
partitioning [Kyrola OSDI’12] and 
privatization of vertex properties
We will discuss how their ideas 
were rehashed in GraphGrind



EDGEMAP, VERTEXMAP 
AND NUMA-AWARENESS

Goal: map code and data to 
NUMA nodes
One type of arrays
• Properties (per vertex)
Two types of loops
• Loops over edges
• Loops over vertices
Two types of iteration
• Sparse frontier
• Dense frontier

vertex	property

in

out



RECAP: RACE CONDITIONS

In a concurrent program with race 
conditions, the outcome of the program 
may differ depending on the relative 
execution speed of threads

Typical solutions:
• mutual exclusion
• atomic memory operations
• owner-computes

A pair of load and store instructions, 
at least one of which is a store, that 
access the same memory location



OWNER-COMPUTES

Decomposition based on partitioning input/output 
data is referred to as the owner computes rule
Each partition performs all the computations 
involving data that it owns
• Input data decomposition: A task performs all 

the computations that can be done using these 
input data

• Output data decomposition: A task computes 
all the results in the partition assigned to it

Input	partitioning
Red	and	blue	processors

Output	partitioning

input

output

input

output



THE “MAP” IN EDGEMAP 
AND VERTEXMAP

Edgemap:
• Iteration space: (u,v) ∈ E 

where u, v ∈ V
• Dependencies are determined 

by graph topology

Vertexmap:
• Iteration space: v ∈ V

vertex	property

in

out

graph
defines
dependencies

in

out

one-to-one
dependencies



NUMA-AWARE LAYOUT 
FOR EDGEMAP

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3
How to split edgemap over NUMA 
nodes?
• code
• data
Observation
Remote stores are more expensive 
than remote loads [Zhang PPoPP ‘15]

Need to co-locate code with the 
updated data 
Edges are processed by CPUs 
attached to the NUMA node that 
holds the destination’s property



NUMA-AWARE LAYOUT 
FOR EDGEMAP

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3
Goal
Determine cuts of { code, data } 
such that performance is maximised
How?
Partition graph such that each 
partition (NUMA node) has an equal:
1. #edges, #cuts [PowerGraph

OSDI’12] … breaks locality
2. #sources [X-stream SOSP’13]

… race conditions
3. #edges [Polymer PPoPP ‘15]

4. (α #destinations + #edges) 
[Gemini OSDI’16]



NUMA-AWARE LAYOUT 
FOR EDGEMAP
It depends! [GraphGrind ICS’17]

“Vertex-oriented” algorithms
• Best performance with equal 

#destinations
• Frontier density mostly below 50%
• BFS, Betweenness Centrality, 

Bellman-Ford

“Edge-oriented” algorithms
• Best performance with equal #edges
• Frontier density mostly close to 100%
• PageRank, SpMV, Belief Prop., 

PageRankDelta

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3
Edge-oriented	algorithms

Vertex-oriented	algorithms



NUMA-AWARE LAYOUT 
FOR VERTEXMAP
“Vertex-oriented” algorithms
• Trivial

“Edge-oriented” algorithms
• Need to choose between balancing 

compute and minimising traffic across 
NUMA nodes

• Better to balance compute and incur 
additional inter-node traffic 
[GraphGrind ICS’17]

• Consequently, data is partitioned 
differently from compute

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3

Edge-oriented	algorithms

in

out

Socket	0 Socket	1 Socket	2 Socket	3



NUMA-AWARENESS 
CHOICES

• Baseline is CPU balance and 
memory imbalance
• Implies remote accesses

during vertex map
• CPU imbalance

• No remote accesses
during vertex map

• Memory balance
• No remote accesses

during vertex map
• Many remote accesses

during edge map

-15%

-10%

-5%

0%

5%

10%

15%

Tw
itt

er

Fr
ie

nd
st

er

Tw
itt

er

Fr
ie

nd
st

er

Tw
itt

er

Fr
ie

nd
st

er

Tw
itt

er

Fr
ie

nd
st

er
CC PR PRDelta SpMV

CPU imbalance

Memory balance

Pe
rfo

rm
an
ce
	im

pr
ov
em

en
t



CAN WE MEET BOTH 
REQUIREMENTS?
Have our cake and eat it too!

VEBO

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3

Edge-oriented	algorithms

in

out

CPU	0 CPU	1 CPU	2 CPU	3



PERFORMANCE EVALUATION OF 
NUMA-AWARENESS
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Combination of optimisations [Sun ICS’17]
• Pruned CSC/CSR representation
• Tune partitioning to edge/vertex 

algorithms
• NUMA-aware layout of vertex arrays
• CSC traversal: “caching” intermediate 

values to minimise load/stores
• Full frontier: specialised version of code 

that omits frontier check
• Sparse CSR traversal: no partitioning 

applied
4-socket	2.6GHz	Intel	Xeon E7-4860	v2,	48	threads,	256	GiB



GRAPH 
PARTITIONING



MEMORY LOCALITY

• Reuse Distance Distribution
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VERTEX REPLICATION

When partitioning the edge set, a vertex may 
appear in multiple partitions

Replication factor =
#repeated vertices / #unique vertices

Replication factor tends to |E|/|V| as number 
of partitions grows

Replication implies space and runtime 
overhead
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IMPLICATIONS OF
VERTEX REPLICATION

A different view on the same effect:

If we partition the edge set P-way, then a 
vertex with degree d<P has zero edges in 
at least P-d partitions. It has some edges 
in at most d partitions.

Partitions of a sparse graph
are hyper-sparse
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GRAPH DATA 
STRUCTURES

• Compressed Sparse Columns (CSC)
• List incoming edges for each vertex
• “Backward” traversal (pull)
• “vertex-centric”

58

• Coordinate list (COO)
• A list of edges
• “edge-centric”

• Compressed Sparse Rows (CSR)
• List outgoing edges for each vertex
• “Forward” traversal (push)
• “vertex-centric”

No performance boost from 
frontiers or pruning for COO



IMPLICATIONS OF
VERTEX REPLICATION
CSC and CSR are not scalable formats

• Increased storage
• Increased execution time to 

traverse graph
Pruned CSC/CSR

• A.k.a. Compressed Compressed 
Sparse Rows/Columns

• Omits zero-degree vertices
COO is scalable to any number of 
partitions

• But inefficient for sparse frontiers
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COO ADVANTAGE: 
SPACE FILLING CURVES

Space filling curves define a 
traversal order through a space 
that tends to minimise memory 
locality
Map nD order onto 1D order
Hilbert curve, Morton order (Z-
order), and many others
COO allows edges to be stored in 
any order:
• CSR order
• CSC order
• Space filling curves

v

u

Edges are points in a 2D space:
For u,v in 0,…,|V|-1:

(u,v) = 1 if (u,v) ∈ E
(u,v) = 0 otherwise

Edgemap: visit all (u,v) in E



GRAPH PARTITIONING 
BENEFITS
• Betweenness Centrality, Twitter • PageRank, Twitter
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DIRECTION-OPTIMIZATION

• Ligra [Shun PPoPP’13]

d = (#active vertices + 
#active edges) / #edges

if d > 5% then
# dense frontier
if algorithm prefers

forward then
traverse CSR

else
traverse CSC

endif
else # d <= 5%

# sparse frontier
traverse CSR

endif

• GraphGrind [Sun ICPP’17]
• 3-way heuristic
d = (#active vertices + 
#active edges) / #edges

if d > 50% then
# dense frontier
traverse partitioned COO

else if d > 5% then
# medium-dense case
# dense frontier
traverse CSC

else # d <= 5%
# sparse frontier
traverse CSR

endif



LOAD BALANCE



LOAD BALANCE

Execution time/partition highly 
dependent on the degree of 
vertices
Reorder vertices
• in order of decreasing in-degree
• using list scheduling
VEBO: Vertex and Edge Balanced 
Partitioning

Revisting edge	balance:
Two	partitions	with	3	edges
Which	partition	is	processed	faster?
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VEBO BENEFITS

Partitions are processed faster as 
a side-effect of reordering
Remote cache misses are traded 
for local misses
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PERFORMANCE

L: Ligra, P: Polymer, Adaptive: 
GraphGrind with 3-way ”direction-
optimization”0

20

40

60

80

BP PR PRDelta

Ti
m

e 
[s

]

L P Adaptive

0
1
2
3
4
5

CC SPMV BFS BC BF

Ti
m

e 
[s

]

L P Adaptive

0

50

100

150

200

BP PR PRDelta

Ti
m

e 
[s

]

L P Adaptive

0

5

10

15
Ti

m
e 

[s
]

L P Adaptive

Twitter

Friendster



PERFORMANCE

Comparing Ligra, Polymer (NUMA-aware), 
and 3 versions of GraphGrind
Twitter graph
4-socket 2.6GHz Intel Xeon E7-4860 v2, 48 
threads, 256 GiB
Similar results hold for other graphs
VEBO relabels vertex IDs to achieve load 
balance
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CONCLUSION AND 
OUTLOOK
Scale-free properties of graphs make it hard to achieve high-performance
Code itself is short – devil is in the detail
Graph partitioning crucial: NUMA-locality; avoiding atomics; improving memory locality
Some open questions:
• What are the limits on memory efficiency?
• What is the cause of performance difference between CSR/CSC/COO?
• Do the principles behind GraphGrind apply to distributed memory systems?
• How well does the programming model capture graph algorithms?
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