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WHAT ARE GRAPH
ANALYTICS

Graphs represent interactions
between people or things

Graph analytics are algorithms
that extract information from a
graph

Graphs tend to grow large, and
often tend to exhibit a power-law
degree distribution

» “6 degrees of separation”
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WHY SHARED MEMORY?

Because of properties of the workload

Little computation, mostly
communication/synchronisation

Data sets not so large, e.g., Twitter’s
follower graph fits in memory of a single
server [Sharma PVDLB'16]

Future memory technologies will increase
capacity: High-Bandwidth Memory/die-
stacking, storage-class memory
Large-scale shared-memory systems

implement a non-uniform memory access
(NUMA) model

Memory Hierarchy
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Storage

Size: 100x
Latency: 100,000x

Size: 10,000x
Latency: 10,000,000x



WHAT IS NUMA?

Each CPU socket is connected to local
DRAM memory

Inter-node links provide access to “remote”
DRAM memory

Local links have higher bandwidth and lower
latency than inter-node links

Difference is more pronounced for stores than
for loads

In a program optimised for NUMA, CPU cores
primarily access local DRAM
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GOAL

How to map graph analytics over immutable
graphs onto a NUMA architecture while
minimising execution time?

CPU
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AGENDA

« Context and Goal

* Preliminaries

« Graph Algorithms

« Graph Analytics Frameworks

« Elements of High-Performance Graph Analytics
 NUMA-awareness

* Graph partitioning

* Load balance

« Conclusion and outlook
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PRELIMINARIES
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vertex ID

vertex

edge

destination of
edge (3,4)

source of
edge (3,4)

PRELIMINARIES

Graph G=(V,E) where
V: set of vertex labels
E C VXV: set of pairs of vertices

Frontier F is a set of active
vertices with F < V
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iIn-degree: 3
out-degree: 5

PRELIMINARIES

in-degree: #incoming edges

@@ out-degree: #outgoing edges
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PRELIMINARIES

Directed graph: edges have a
direction (source, destination)

Undirected graph: edges have
no direction

if (u,v) € Ethen (v,u) e E
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PRELIMINARIES

Undirected graphs are
commonly represented such that
every edge occurs twice
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GRAPH ALGORITHMS
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Round 0 old: O

no change!
old: 5 old: 1
new: 0 new: 1
old: 2
new: 1

LABEL PROPAGATION

Strongly connected components

Initial label assignment of "old”
label, copied to “new” label

Update rule: for (u,v) in E:
new[v] = min(new[v],old[u])

Copy “new” to “old” and repeat
update phase until no more
changes made
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Round 0 old: O

new: 0

no change! @ no change!
old: 5 old: 1
new: 0 new: 1

old: 2
a new: 1
old: 4 @

new: 1 old: 3

new: 3

LABEL PROPAGATION

Strongly connected components

Initial label assignment of "old”
label, copied to “new” label

Update rule: for (u,v) in E:
new[v] = min(new[v],old[u])

Copy “new” to “old” and repeat
update rule on all edges until no
more changes made
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LABEL PROPAGATION

Round 0 old: O
new: 0
@ Further propagating the labels
old: S old: 1 4 anc_i 5" held by vertlce_s 4
Tew: 0 Tew: 1 and 5 incurs no changes in
' ' the labels of other vertices

old: 2
new: 1
old: 4 @

new: 1 old: 3

new: 3 QUEEN'’S
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LABEL PROPAGATION

Round 0 done old: 0
new: 0
@ Round 0 of propagating labels
has finished

old: O old: 1
new: 0 new: 1 Copy “new” to “old” and go

again...
old: 1
new: 1
old: 1 @

new: 1 old: 3

new: 3 QUEEN’S
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LABEL PROPAGATION

Round 1 done old: 0
new: O
@ After round 1, label “0” has
old: 0 old: 1 propagated to more vertices
new: 0 e a new: 0 We need to do one more

round to ensure no further
changes occur

old: 1
new: 0
old: 1 @

new: 0 old: 3

new: 3 QUEEN'’S
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LABEL PROPAGATION

RoundOdone — q: WITH FRONTIER
new: 0O
@ Let's return to the state at the
end of round O

old: 5 old: 1
new: 0 new: 1 If in any round the label did

not change, then there is no
point in trying to propagate the

old: 2 label again
new: 1
old: 4 @

new: 1 old: 3

new: 3 QUEEN'’S
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LABEL PROPAGATION

Round 1 preparing oq: o WITH FRONTIER
new: 0O
@ Let's return to the state at the
end of round O

old: 5 old: 1
new: 0 new: 1 Vertices 2, 4, 5 have changes

In their label (o1d[v]!=new[v])
Frontier = {2, 4, 5}

° a old: 2 Only vertices 2, 4 and 5 are
new: 1 visited in round 1

old: 4 @

new: 1 old: 3

new: 3 QUEEN'’S
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Round 1 done

old: 0
new: 0

old: 1
new: 0

old: 0
new: 0O

©

()

old: 3
new: 3

old: 1
new: 0

old: 1
new: 0

LABEL PROPAGATION
WITH FRONTIER

Let's return to the state at the
end of round O

Vertices 2, 4, 5 have changes
In their label (o1d[v]!=new[v])

Frontier = {2, 4, 5}

Only vertices 2, 4 and 5 are
visited in round 1

In round 2:
Frontier = {1, 2, 4}
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Round 2 preparing old: 0

old: 0
new: 0

old: 0
new: 0O

nhew: 0O

©

()

old: 3
new: 3

old: 0
new: 0O

old: 0
new: O

LABEL PROPAGATION
WITH FRONTIER

Let's return to the state at the
end of round O

Vertices 2, 4, 5 have changes
In their label (o1d[v]!=new[v])
Frontier = {2, 4, 5}

Only vertices 2, 4 and 5 are
visited in round 1

In round 2:
Frontier = {1, 2, 4}

Nothing changes QUEEN'S
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GRAPH ANALYTICS
FRAMEWORKS
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size(U : frontier) : N
returns |U|
EdgeMap(G : graph,
U : frontier,
F : (vertex x vertex) — bool,
C : vertex — bool) : frontier
VertexMap(U : frontier,

F : vertex — bool) : frontier

LIGRA

[Shun PPoPP’13]
Assume graph G=(V,E)

EdgeMap applies an operation F to each
edge (u,v) € Ewhereu € U and C(v) =
true. It returns a frontier that contains all v
where any call to F(u,v) returned true

VertexMap applies an operation F to each
vertex v € U and returns a frontier that
contains v iff v € U and F(v) = true

In both cases, F may have side effects,
e.g., updating properties for the vertices
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LABEL PROPAGATION

Algorithm 8 Connected Components I N LIG RA

1: IDs = {0,...,|V]|—1} > initialized such that IDs[i] = %
2: previDs = {0,...,|V| —1} b initialized such that prevIDs[i] =

3: writeMin is an atomic

4: procedure CCUPDATE(s, d) “ . n .

5. origID — IDs[d fetch_and_min” operation
6: if (WRITEMIN(&IDs|d]|, ID th .

o M(WRiTE (orifgm :s[:]prefl[]s)lz[)d])en Like compare-and-set, returns true
8:  return0 if destination is successfully
9: .

10: procedure COPY(2) modified

11:  prevIDs[i] = IDs[i]

12: return 1

13:

14: procedure CC(G)

15: Frontier = {0,...,|V|—1} > vertexSubset initialized to V

16: while (S1zE(Frontier) # 0) do

17: Frontier = VERTEXMAP(Frontier, COPY)

18: Frontier = EDGEMAP(G, Frontier, CCUPDATE, Ctruye)

19: return IDs

Source: Shun PPoPP’13
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interface GASVertexProgram(u) ({

// Run on gather_nbrs (u) POWERGRAPH

gather (D,, D(u,v), D,) — Accum
sum (Accum left, Accum right) — Accum
apply (D,, Accum) — D"

// Run on scatter_nbrs (u)

scatter (D}, D(,,), Dy) — (D5Y, Accum) [Gonzalez OSDI'12]
: Similar concepts, presented differently
Figure 2: All PowerGraph programs must implement the state- _ ‘ _ , o
less gather, sum, apply, and scatter functions. Vertices "activated by epr|C|t call as

opposed to recording frontier

Algorithm 1: Vertex-Program Execution Semantics

Input: Center vertex u Needs to maintain state on vertices and
if cached accumulator a, is empty then on edges
foreach neighbor v in gather _nbrs(u) do
| ay < sum(ay, gather(Dy, Dy ), Dv)) Distributed framework

foreach neighbor v scatter_nbrs(u) do
(D(u,v):Aa) < scatter(Dy, Dy, ), Dy)
if a, and Aa are not Empty then a, + sum(a,, Aa)
else a, + Empty

end

end
end
D, < apply(Dy, ay)
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GIM-V, or ‘Generalized Iterative Matrix-Vector multipli-
cation’ is a generalization of normal matrix-vector multipli-
cation. Suppose we have a n by n matrix M and a vector v
of size n. Let m; ; denote the (7, j)-th element of M. Then
the usual matrix-vector multiplication is

M x v =’ where v; = 7| m; jv;.

There are three operations in the previous formula, which,
if customized separately, will give a surprising number of
useful graph mining algorithms:

1) combine2: multiply m; ; and v;.

2) combineAll: sum n multiplication results for node

1.
3) assign: overwrite previous value of v; with new
result to make v;.

In GIM-V, let’s define the operator X, where the three
operations can be defined arbitrarily. Formally, we have:
vV =M xXgv
where v, = assign(vi,combineAll;({z; | j =
1..n, and z; =combine2(m; j,vj)})).

PEGASUS

[Kang ICDM’09]
Similar concepts, presented differently

Uses connection between graphs and
their adjacency matrix

Generalized matrix-vector multiplication
captures ‘accumulation’ concept

Essentially says that graph algorithms
may be represented as semi-rings
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ELEMENTS OF HIGH-
PERFORMANCE
GRAPH ANALYTICS
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GRAPH ANALYTICS
STRUCTURE

frontier F = ..;
frontier newF := { };
for edge (u,v) € E do
if u € F then
if C(v) and op(u,v) then
newF = newF U { v };
fi
fi
od

op implements the update
of vertex properties

op, C are algorithm-specific

op returns true if destination
should be considered in the
next round

op(u,v) is usually of the
form
newl[v]=new[v]®old[vVv]
where @ is a commutative
and associative binary
operation (reduction)

C(v) checks convergence



CONVERGENCE

frontier F = ..;
frontier newF := { };
for edge (u,v) € E do
if u € F then
if C(v) and op(u,v) then
newF = newF U { v };
fi
fi
od

Shun PPoPP’13:

“The function C is useful in
algorithms where a value
associated with a vertex only
needs to be updated once (i.e.
breadth-first search).”

The paper also checks
convergence for betweenness
centrality

Real usefulness depends on
how the graph is traversed



GRAPH DATA
STRUCTURES

« Compressed Sparse Rows (CSR) + Compressed Sparse Columns (CSC)

« List outgoing edges for each vertex List incoming edges for each vertex
e “Forward” traversal “Backward” traversal

. “Top-down” traversal “Bottom-up” traversal

. “push’ Pur

O

Frontier: CSR allows to skip Pruning: CSC allows to skip edges
edges for inactive vertices (u<F) for pruned vertices (C(v)=false)

30




CSR-BASED EDGEMAP

« Checking frontier is

frontier F := ..; compulsory: op(u,v) may be

frontier newF := { }; called only ifueF

for vertex u € V do * Pruning is not compulsory:
if u € F then may call op(u,v) if

for vertex v € out(u) do C(V)=false
if €on—and op(u,v) then * Asop(u,v)isonly a hand-
full of instructions, there is

. . little benefit in using C(v) in
fi od fi od CSR

newF = newF U { v };

QUEEN'’S
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CSC-BASED EDGEMAP

* Pruning is highly effective in

frontier F := ..; CSC

frontier newF := { }; - Allows to early terminate

for vertex v € V do visiting the in-edges of u
if C(v) then « Or skip in-edges alltogether

for vertex u € in(v) do
if u € F then
if op(u,v) then
newkF = newF U { v };
if not C(v) then break; fi
fi fi fi od od



BFS on rMat24

8
2 1e+08 ¢
EVOLUTION OF 3 AN —
FRONTIER SIZE I S U —
S le+06 |
S 100000 | :
_ - E 10000 £ -
Algorithms exhibit one of three Z ok /S
primary patterns: 8 1ol _
% " BFS N
° ﬂat b 10 | Threshold - i
E 1 — | | | | ]
e shrink - 2 B 6 8 10 12 14 16 18
_ Iteration number
* grow then shrink . Connected Components on rMat24
Q
& le+09 — T | T | l
% le+08 ;” T T 3
§ les07E. ... A s
g les06 3
g 100000 :
Z 10000 | =
: 1000 -
“ 100 - Connected Components ~_ .
QUEEN'S - Threshold - . | N
e 1
gﬂ%@'}"s'w = 2 4 6 8 10 12

Source: Shun PPoPP’13 Iteration number



Current
Queue

Packed
Adjacency
List

Level List

Packed
Adjacency
List

~—*—

0 1 2 3 4
I I

1111 |N|1 N[f1|0|1

.................. Fls F

0 1 2 4

A - AL ~ A V_H_H_H
alblc|d|e]|f hiil|]jlk nlo|plq

b > .................................. > ,,,,,,,,,,,,,,,,, )

(b) Data-Access Pattern of Read-Based Method

FRONTIER
REPRESENTATION

“Sparse” frontiers

* Few bits set

* Queue of active vertex IDs
“Dense” frontiers

* Many bits set

« Bitmap or array of booleans

Dynamically switch as frontier size
changes

[Hong et al, PACT'11]
QUEEN’S
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CSR-BASED EDGEMAP
WITH SPARSE FRONTIER

frontier F = ..; // queue

« Reminder: dense frontiers:
for vertex u € V do

frontier newF := { }; // queue .
if u € F then

for vertex u € F do

for vertex v € out(u) do

if Cev—and op(u,v) then * |teration over F is efficient

newF = newF U { v }: // append when stored as a queue

* When F is stored as a

fi od od _ o
queue, only CSR is efficient

* new frontier may contain

QUEEN’S duplicates!
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parent: -1

5

parent: -1

©

parent: -1

&

parent: -1

o parent: -1
a parent: (root)

BREADTH-FIRST
SEARCH

Starting from a root vertex,
identify a shortest path to all
other vertices

Construct a spanning tree
-1 means parent unknown

In this case we start from
vertex 2

Requires a frontier: all
vertices that received a parent

In the previous round

QUEEN'’S
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parent: 2

5

parent: -1

©

parent: 1

&

parent: -1

a parent: 2
e parent: (root)

BREADTH-FIRST
SEARCH

"Top-down” traversal, “push”
Focus on out-edges

Old frontier: 1 5
New frontier: 4 5
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parent: 2

parent: -1

©

5

parent: 1 @

parent: -1

o parent: 2
a parent: (root)

BREADTH-FIRST
SEARCH

"Bottom-up” traversal, “pull”
Focus on in-edges

Vertex complete as soon as
parent updated

Old frontier: 1 5
New frontier:

QUEEN'’S
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IMPACT OF CONVERGENCE
[Beamer, SC12]

308 N T T T T T B 7 [ T T T T L
Claimed Child 6k ®—@® Top-down
2.5B} Failed Child |+ 5| O—0 Bottom-up | |
Peer 0 4
w 20Bf Valid Parent || g
o = 3+ -
< 1.5B "
.g : 2+ -
Z D
1.08} - 1r o |
0 J @ @D @ o
058k | 0 1 2 3 4 5 6
round
00 '1 > 3 4 .'5 16 Fig. 6. Sample search on kron27 (Kronecker 128M vertices with 2B

undirected edges) on the 16-core system.
round

Fig. 3. Breakdown of edges in the frontier for a sample search on kron27 _ : : :
(Kronecker generated 128M vertices with 2B undirected edges) on the 16-core Bottom-u p/ pu Il'is faster in the middle rounds

system. In those rounds, many vertices are active

Claimed child: parent[v] updated from -1 to a vertex ID
Failed child: parent[v] updated in same round by parent
Peer: parent[v] updated in same round by sibling

Valid parent: v was encountered in a round prior to u
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-e-Bellman-Ford

DIRECTION' % 100% -»-PageRankDelta
OPTIMISATION = 80% 5%
2 60%
[Beamer SC’12] [Shun SPAA’13] %‘ i
d = (#active vertices + 2 40%
#active edges) / #edges [% 20% $
, 0% 'ceed | TRNNNN99998880009906550
if d > 5% then
# dense frontier 0 10_ 20 _30 40
if lteration of algorithm
then .
. traverse |CSR Programmer’s choice
else . . . .
traverse CSC Little is known to guide this
endif We will shed some light on this
else # d <= 5% .
# sparse frontier ... work in progress
traverse CSR
endif Requires storage of both

QUEEN’S CSC and CSR
UNIVERSITY
BELFAST
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NUMA-AWARENESS
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(a) System topology

Inst. O-hop | 1-hop | 2-hop
80-core Intel Xeon machine
Load 117 271 372
Store 108 304 409
64-core AMD Opteron machine
Load 228 419 498
Store 256 463 544

(b) Latencies (cycles) on the distance

Figure 3. The characteristics of NUMA machines for experiments.

Access O-hop 1-hop 2-hop | Interleaved
80-core Intel Xeon machine

Sequential 3207 2455 2101 2333

Random 720 348 307 344
64-core AMD Opteron machine

Sequential 3241 | 2806/2406 1997 2509

Random 533 509/487 415 466

Figure 4. The bandwidth (MB/s) of memory access on the distance.

POLYMER

[Zhang PPoPP’15]

Remote access has higher
latency, lower bandwidth than local
access

Stores are more affected than
loads

Designed a scheme using graph
partitioning [Kyrola OSDI'12] and
privatization of vertex properties

We will discuss how their ideas
were rehashed in GraphGrind

QUEEN'’S
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out

vertex property

EDGEMAP, VERTEXMAP
AND NUMA-AWARENESS

Goal: map code and data to
NUMA nodes

One type of arrays

* Properties (per vertex)
Two types of loops

« Loops over edges

« Loops over vertices
Two types of iteration

« Sparse frontier

« Dense frontier

QUEEN’S
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RECAP: RACE CONDITIONS

4 N
A pair of load and store instructions,

at least one of which is a store, that

Typical solutions:

access the same memory location * mutual exclusion
N - « atomic memory operations
In a concurrent program with race « owner-computes

conditions, the outcome of the program
may differ depending on the relative
execution speed of threads
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OWNER-COMPUTES

Decomposition based on partitioning input/output
data is referred to as the owner computes rule

Each partition performs all the computations
iInvolving data that it owns

* Input data decomposition: A task performs all
the computations that can be done using these
input data

« Output data decomposition: A task computes
all the results in the partition assigned to it

QUEEN'’S

UNIVERSITY
BELFAST

Input partitioning
Red and blue processors

Output partitioning

input

output

input

output



in

out

out

vertex property

AL T
W
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graph
defines

dependencies

one-to-one
dependencies

THE “MAP” IN EDGEMAP
AND VERTEXMAP

Edgemap:

* |teration space: (u,v) € E
where u,v € V

* Dependencies are determined
by graph topology

Vertexmap:

« lteration space:v €V

QUEEN'’S
UNIVERSITY
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in

out

L\IUMAO:L NUl\/lAl:l: NUMA 2 :I:NUMA3:
i i i
A\ \b /
" "/, \/
A l’r ['r S %
| M _%OMK

NUMA-AWARE LAYOUT
FOR EDGEMAP

How to split edgemap over NUMA
nodes?

e code
 data
Observation

Remote stores are more expensive
than remote loads [Zhang PPoPP ‘15]

Need to co-locate code with the
updated data

Edges are processed by CPUs
attached to the NUMA node that
holds the destination’s property



in

out

L\IUMAO:L NUl\/lAl:l: NUMA 2 :I:NUMA3:
| | |
N AL\ A \b [
" "/, \/
%&W ’r‘ ['r S %
LA DR DI

NUMA-AWARE LAYOUT
FOR EDGEMAP

Goal

Determine cuts of { code, data }
such that performance is maximised

How?

Partition graph such that each
partition (NUMA node) has an equal:

1. #edges, #cuts [PowerGraph
OSDI'12] ... breaks locality

2. #sources [X-stream SOSP’13]
.. race conditions

3. #edges [Polymer PPoPP ‘15]

(a #destinations + #edges)
[Gemini OSDI'16]



Vertex-oriented algorithms

: NUMA O 1. NUMA1=I: NUMA 2 1, NUMA 3 :

« »

in JANANANERAR /
‘(‘ " y 4 y ,J' X X
“ ' ’ ‘ ,L/ )
"0‘" é!u @'ﬁ.‘~

Edge-oriented algorlthms

NUMA O NUMA 1 NUMA 2 NUMA 3
< sl ok .IA

in 1y ih ( /

X
f

out

W’ l' sl
»‘IAA ’ ;,;L WM\\

NUMA-AWARE LAYOUT
FOR EDGEMAP

It depends! [GraphGrind ICS’17]
“Vertex-oriented” algorithms

« Best performance with equal
#destinations

* Frontier density mostly below 50%

 BFS, Betweenness Centrality,
Bellman-Ford

“Edge-oriented” algorithms
« Best performance with equal #edges
* Frontier density mostly close to 100%

« PageRank, SpMV, Belief Prop.,
PageRankDelta



NUMA-AWARE LAYOUT
Edge-oriented algorithms FOR VERTEXMAP

NUMA O NUMA 1 NUMA 2 NUMA 3

. “Vertex-oriented” algorithms

NN / e Trivial

in il

(]

N\

I\ hN' Q)
A ‘!’ / TN r, Y Y
{'%’4‘ Y’ (}; '/"’ }.’ A" ‘) ‘ “Edge-oriented” algorithms
N /) (N .
NA\ A ‘ ','4 «?M ‘ * Need to choose between balancing
out ‘ A '!"‘A “" \" compute and minimising traffic across
NUMA nodes
_ Y » Better to balance compute and incur
n I additional inter-node traffic
I [GraphGrind ICS’17]
: « Consequently, data is partitioned
VvV b v IV Y v Y s !!j,www¢ differently from compute
out

‘Socket 0 TS»ocket 1 Socket 2 Socket 3



Performance improvement

15%

10%

5%

0%

-5%

-10%

-15%

NUMA-AWARENESS
CHOICES

B CPU imbalance

® Memory balance

 Baseline is CPU balance and
memory imbalance

 Implies remote accesses
during vertex map

- m- mE ®E -E ®mT =
“I I I I I e CPU imbalance

Twitter

CC

Friendster

Twitter

PR

Friendster

* No remote accesses
during vertex map

« Memory balance
« No remote accesses

g 2 8 g .
£ 8| % 3 during vertex map
- s F & + Many remote accesses
H- H- during edge map
PRDelta SpMV ’
ONIVERSITY
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CAN WE MEET BOTH
Edge-oriented algorithms REQUIREMENTS?

NUMAO,., NUMA1 NUMA 2 NUMA 3 .
< > . . > Have our cake and eat it too!

in

1\

N\ 1

LA UATRLY 1 /el .a‘ L
i ’r\."l/ avig
’ | »‘«1\‘« MQM?@»X‘&

out

in

out




Twitter
M Ligra ®Polymer GraphGrind (NUMA)

80 5
60
40 I 4
20
o Mimli 2
R QO O -
K CC BFS BC BF

Friendster
W [igra ®Polymer Grathrlnd (NUMA)

160
120
80
40 I I 5
0
< Q%QQ 0

R CC BFS BC BF

4-socket 2.6GHz Intel Xeon E7-4860 v2, 48 threads, 256 GiB

PERFORMANCE EVALUATION OF
NUMA-AWARENESS

Combination of optimisations [Sun ICS’17]

Pruned CSC/CSR representation

Tune partitioning to edge/vertex
algorithms

NUMA-aware layout of vertex arrays

CSC traversal: “caching” intermediate
values to minimise load/stores

Full frontier: specialised version of code
that omits frontier check

Sparse CSR traversal: no partitioning
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MEMORY LOCALITY
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 Misses Per Kilo-Instruction
(MPKI) — Twitter graph
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|

100 200 300
Number of Partitions
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VERTEX REPLICATION

When partitioning the edge set, a vertex may
appear in multiple partitions

Replication factor =
#repeated vertices / #unique vertices

Replication factor tends to |E|/|V| as number
of partitions grows

Replication implies space and runtime

overhead QUEEN'S

UNIVERSITY
BELFAST




% VERTICES WITH ZERO DEGREE

==T\itter =®=Friendster

100%

80%

60%

40%
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0%

1

2 4 8

NUMBER OF PARTITIONS

Orkut =e=USAroad

16

IMPLICATIONS OF
VERTEX REPLICATION

A different view on the same effect:

If we partition the edge set P-way, then a
vertex with degree d<P has zero edges in
at least P-d partitions. It has some edges
In at most d partitions.

Partitions of a sparse graph
are hyper-sparse
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GRAPH DATA

STRUCTURES

* Compressed Sparse Rows (CSR) - Compressed Sparse Columns (CSC)
» List outgoing edges for each vertex  List incoming edges for each vertex
* “Forward” traversal (push) « “Backward” traversal (pull)
« “vertex-centric” - ‘“vertex-centric”

O

« Coordinate list (COO)

« Alist of edges
» “edge-centric”

No performance boost from
frontiers or pruning for COO

QUEEN'’S
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BELFAST

OO0
OO0

58



Storage Size [GiB]

-+-CSC/CSR
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Twitter graph
CSC/CSR pruned

100 200 300
Number of Partitions

COO

IMPLICATIONS OF
VERTEX REPLICATION

CSC and CSR are not scalable formats
* Increased storage
* |ncreased execution time to
traverse graph
Pruned CSC/CSR

* A.k.a. Compressed Compressed
Sparse Rows/Columns

* Omits zero-degree vertices

400 COQ is scalable to any number of

partitions

« But inefficient for sparse frontiers
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] L

| nSonbdr

Edges are points in a 2D space:

Foru,vinO,...,|V|-1:
(uv)=1if(uyv) € E
(u,v) = 0 otherwise

Edgemap: visit all (u,v) in E

COO ADVANTAGE:
SPACE FILLING CURVES

Space filling curves define a
traversal order through a space
that tends to minimise memory
locality

Map nD order onto 1D order

Hilbert curve, Morton order (Z-
order), and many others

COQO allows edges to be stored in
any order:

e CSR order
« CSC order

« Space filling curves



GRAPH PARTITIONING
BENEFITS

« Betweenness Centrality, Twitter  PageRank, Twitter
10 iterations
1
8-CS 1 partition — ¢ 1 partition — -8-CSR + atomics CSC, no atomics
multiple threads 1 1 thread , ,
“©-CCL ' awnvo vCo. o awnnes “©-COO0O + atomics COOQO, no atomics

40 | partitioned CSR 25
) | out of memory )
£ 3.0 M £ 20
= , i~
c I c 15 g
20 : S
: : 3 10
© 1.0  skipsirrelevant i 2 5
L edges ! n
0.0 I 0
1 10 : 100 1000 1 10 100 1000
QUEEN'’S Number of Partitions Number of Partitions
UNIVERSITY
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DIRECTION-OPTIMIZATION

 Ligra [Shun PPoPP’13] e GraphGrind [Sun ICPP’17]
« 3-way heuristic
d = (#active vertices + d = (#active vertices +
factive edges) / #edges tactive edges) / #edges
if 4 > 5% then if d > 50% then
# dense frontier # dense frontier
if algorithm prefers traverse partitioned COO

forward else if d > 5% then
traverse # medium—-dense case

else # dense frontier
travers% traverse CSC
endif else # d <= 5%

else # d <= 5% # sparse frontier
# sparse frontier traverse CSR
traverse CSR endif
endif
QUEEN'S
UNIVERSITY
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4 6E+06 4.7E+06 4.8E+06 0.E+00 5 E+05
#Destination Vertices

Revisting edge balance:
Two partitions with 3 edges

Which partition is processed faster?

ol

l >

2
D
Original + VEBO E

Original + VEBO

Number of Edges

LOAD BALANCE

Execution time/partition highly
dependent on the degree of
vertices

Reorder vertices

using list scheduling

in order of decreasing in-degree

VEBO: Vertex and Edge Balanced
Partitioning

04
— 0.3

L

v 02

£

=
0

0.E+00

Original + VEBO

2.E+06 4 E+06
#Source Vertices

Friendster
PageRank



VEBO BENEFITS

LLC local misses LLC remote misses LLC misses

10 5 12
8 4 9
6 3
: Il I 2 I |I : “
2 1
0 0 l 0

Twitter Friendster Twitter  Friendster Twitter Friendster

® Original ®VEBO ® Original ®VEBO ® Original ®VEBO

TLB misses Branch mispred.
0.015 0.20
0.010 0.15 Partitions are processed faster as

0.10 a side-effect of reordering
0.005 0.05
0.000 0.00 Remote cache misses are traded
Twitter Friendster Twitter  Friendster fOr IOcal miSSGS
B Original ®mVEBO ® Original ®mVEBO
QUEEN’S
UNIVERSITY

PageRank BELFAST




Twitter PERFORMANCE

80 ml =P = Adaptive] 5 W[ =P = Adaptive]
— 4
> 3
E 5 L: Ligra, P: Polymer, Adaptive:
" GraphGrind with 3-way “direction-
0 optimization”
PR PRDelta CC SPMV BFS BC BF
Friendster
200 (| m| WP = ' 15 | ML WP = Adaptive
F— W
%150 o 10
£100 £
- i
5
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|

Hligra
¥ Polymer

GraphGrind (NUMA)

® GraphGrind (Locality) |

B GraphGrind + VEBO

PR

PRDelta

Eligra

= Polymer

GraphGrind (NUMA)
® GraphGrind (Locality)
B GraphGrind + VEBO

CC SPMV BFS BC BF

PERFORMANCE

Comparing Ligra, Polymer (NUMA-aware),
and 3 versions of GraphGrind

Twitter graph

4-socket 2.6GHz Intel Xeon E7-4860 v2, 48
threads, 256 GiB

Similar results hold for other graphs

VEBO relabels vertex IDs to achieve load
balance
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CONCLUSION AND
OUTLOOK

QUEEN’S
»<€J UNIVERSITY
’AJ BELFAST

vvvvvvvv



CONCLUSION AND
OUTLOOK

Scale-free properties of graphs make it hard to achieve high-performance

Code itself is short — devil is in the detalil

Graph partitioning crucial: NUMA-locality; avoiding atomics; improving memory locality
Some open questions:

« What are the limits on memory efficiency?

« What is the cause of performance difference between CSR/CSC/COQ?

* Do the principles behind GraphGrind apply to distributed memory systems?

« How well does the programming model capture graph algorithms?
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