
Hans Vandierendonck, Jiawen Sun
Queen’s University Belfast
20 July 2018

High-Performance
Graph Analytics in
Shared Memory

WHAT ARE GRAPH
ANALYTICS

Graphs represent interactions
between people or things
Graph analytics are algorithms
that extract information from a
graph
Graphs tend to grow large, and
often tend to exhibit a power-law
degree distribution
Ø “6 degrees of separation”

Image	source:	Microsoft

WHY SHARED MEMORY?

Because of properties of the workload
• Little computation, mostly

communication/synchronisation
• Data sets not so large, e.g., Twitter’s

follower graph fits in memory of a single
server [Sharma PVDLB’16]

• Future memory technologies will increase
capacity: High-Bandwidth Memory/die-
stacking, storage-class memory

• Large-scale shared-memory systems
implement a non-uniform memory access
(NUMA) model Image	source:	www.semiengineering.com

WHAT IS NUMA?

Each CPU socket is connected to local
DRAM memory
Inter-node links provide access to “remote”
DRAM memory
Local links have higher bandwidth and lower
latency than inter-node links
Difference is more pronounced for stores than
for loads
In a program optimised for NUMA, CPU cores
primarily access local DRAM

CPU core DRAM
DRAM

DRAM
DRAM

node

GOAL

How to map graph analytics over immutable
graphs onto a NUMA architecture while
minimising execution time?

CPU core DRAM
DRAM

DRAM
DRAM

AGENDA
• Context and Goal
• Preliminaries
• Graph Algorithms
• Graph Analytics Frameworks
• Elements of High-Performance Graph Analytics
• NUMA-awareness
• Graph partitioning
• Load balance
• Conclusion and outlook

PRELIMINARIES

PRELIMINARIES

Graph G=(V,E) where
V: set of vertex labels
E ⊆ V⨉V: set of pairs of vertices

Frontier F is a set of active
vertices with F ⊆ V

1

3
24

5
0

vertex edge

source of
edge (3,4)

destination of
edge (3,4)

vertex ID

PRELIMINARIES

in-degree: #incoming edges
out-degree: #outgoing edges

1

3
24

5
0

in-degree: 3
out-degree: 5

PRELIMINARIES

Directed graph: edges have a
direction (source, destination)

Undirected graph: edges have
no direction
if (u,v) ϵ E then (v,u) ϵ E

1

3
24

5
0

PRELIMINARIES

Undirected graphs are
commonly represented such that
every edge occurs twice1

3
24

5
0

GRAPH ALGORITHMS

LABEL PROPAGATION

• Strongly connected components
• Initial label assignment of ”old”

label, copied to “new” label

• Update rule: for (u,v) in E:
• new[v] = min(new[v],old[u])

• Copy “new” to “old” and repeat
update phase until no more
changes made

1

3
24

5
0

old:	0
new:	0

old:	1
new:	1

old:	2
new:	2

old:	3
new:	3

old:	4
new:	4

old:	5
new:	5
old:	5
new:	0

old:	2
new:	1

old:	4
new:	1

no	change! 0
1

Round	0

LABEL PROPAGATION

• Strongly connected components
• Initial label assignment of ”old”

label, copied to “new” label

• Update rule: for (u,v) in E:
• new[v] = min(new[v],old[u])

• Copy “new” to “old” and repeat
update rule on all edges until no
more changes made

1

3
24

5
0

old:	0
new:	0

old:	1
new:	1

old:	2
new:	2

old:	3
new:	3

old:	4
new:	4

old:	5
new:	5
old:	5
new:	0

old:	2
new:	1

old:	4
new:	1

no	change!

2

no	change!

3

Round	0

LABEL PROPAGATION

Further propagating the labels
“4” and “5” held by vertices 4
and 5 incurs no changes in
the labels of other vertices

1

3
24

5
0

old:	0
new:	0

old:	1
new:	1

old:	2
new:	2

old:	3
new:	3

old:	4
new:	4

old:	5
new:	5
old:	5
new:	0

old:	2
new:	1

old:	4
new:	1

Round	0

LABEL PROPAGATION

Round 0 of propagating labels
has finished
Copy “new” to “old” and go
again…

1

3
24

5
0

old:	0
new:	0

old:	1
new:	1

old:	2
new:	2

old:	3
new:	3

old:	4
new:	4

old:	5
new:	5
old:	0
new:	0

old:	1
new:	1

old:	1
new:	1

Round	0	done

LABEL PROPAGATION

After round 1, label “0” has
propagated to more vertices
We need to do one more
round to ensure no further
changes occur

1

3
24

5
0

old:	0
new:	0

old:	1
new:	0

old:	2
new:	2

old:	3
new:	3

old:	4
new:	4

old:	5
new:	5
old:	0
new:	0

old:	1
new:	0

old:	1
new:	0

Round	1	done

LABEL PROPAGATION
WITH FRONTIER

Let’s return to the state at the
end of round 0
If in any round the label did
not change, then there is no
point in trying to propagate the
label again

0

1

3
24

5
0

old:	0
new:	0

old:	1
new:	1

old:	3
new:	3

old:	5
new:	0

old:	2
new:	1

old:	4
new:	1

Round	0	done

LABEL PROPAGATION
WITH FRONTIER

Let’s return to the state at the
end of round 0
Vertices 2, 4, 5 have changes
in their label (old[v]!=new[v])
Frontier = {2, 4, 5}
Only vertices 2, 4 and 5 are
visited in round 1

0

1

3
24

5
0

old:	0
new:	0

old:	1
new:	1

old:	3
new:	3

old:	5
new:	0

old:	2
new:	1

old:	4
new:	1

Round	1	preparing

24

LABEL PROPAGATION
WITH FRONTIER

Let’s return to the state at the
end of round 0
Vertices 2, 4, 5 have changes
in their label (old[v]!=new[v])
Frontier = {2, 4, 5}
Only vertices 2, 4 and 5 are
visited in round 1
In round 2:
Frontier = {1, 2, 4}

0

1

3
24

5
0

old:	0
new:	0

old:	1
new:	0

old:	3
new:	3

old:	0
new:	0

old:	1
new:	0

old:	1
new:	0

Round	1	done

LABEL PROPAGATION
WITH FRONTIER

Let’s return to the state at the
end of round 0
Vertices 2, 4, 5 have changes
in their label (old[v]!=new[v])
Frontier = {2, 4, 5}
Only vertices 2, 4 and 5 are
visited in round 1
In round 2:
Frontier = {1, 2, 4}
Nothing changes

0

1

3
2

5
0

old:	0
new:	0

old:	0
new:	0

old:	3
new:	3

old:	0
new:	0

old:	0
new:	0

old:	0
new:	0

Round	2	preparing

24

1

GRAPH ANALYTICS
FRAMEWORKS

LIGRA

[Shun PPoPP’13]
Assume graph G=(V,E)
EdgeMap applies an operation F to each
edge (u,v) ∈ E where u ∈ U and C(v) =
true. It returns a frontier that contains all v
where any call to F(u,v) returned true
VertexMap applies an operation F to each
vertex v ∈ U and returns a frontier that
contains v iff v∈ U and F(v) = true
In both cases, F may have side effects,
e.g., updating properties for the vertices

size(U : frontier) : N
returns |U|

EdgeMap(G : graph,
U : frontier,
F : (vertex × vertex) → bool,
C : vertex → bool) : frontier

VertexMap(U : frontier,
F : vertex → bool) : frontier

LABEL PROPAGATION
IN LIGRA

writeMin is an atomic
“fetch_and_min” operation
Like compare-and-set, returns true
if destination is successfully
modified

Source:	Shun	PPoPP’13

POWERGRAPH

[Gonzalez OSDI’12]
Similar concepts, presented differently
Vertices ‘activated’ by explicit call as
opposed to recording frontier
Needs to maintain state on vertices and
on edges
Distributed framework

u

s0

s1

d0

d1

PEGASUS

[Kang ICDM’09]
Similar concepts, presented differently
Uses connection between graphs and
their adjacency matrix
Generalized matrix-vector multiplication
captures ‘accumulation’ concept
Essentially says that graph algorithms
may be represented as semi-rings

ELEMENTS OF HIGH-
PERFORMANCE
GRAPH ANALYTICS

GRAPH ANALYTICS
STRUCTURE
frontier F := …;

frontier newF := { };

for edge (u,v) ∈ E do

if u ∈ F then

if C(v) and op(u,v) then

newF = newF ∪ { v };

fi

fi

od

• op implements the update
of vertex properties

• op, C are algorithm-specific
• op returns true if destination

should be considered in the
next round

• op(u,v) is usually of the
form

new[v]=new[v]⊕old[v]
where ⊕ is a commutative
and associative binary
operation (reduction)

• C(v) checks convergence

CONVERGENCE

frontier F := …;

frontier newF := { };

for edge (u,v) ∈ E do

if u ∈ F then

if C(v) and op(u,v) then

newF = newF ∪ { v };

fi

fi

od

Shun PPoPP’13:
“The function C is useful in
algorithms where a value
associated with a vertex only
needs to be updated once (i.e.
breadth-first search).”
The paper also checks
convergence for betweenness
centrality
Real usefulness depends on
how the graph is traversed

GRAPH DATA
STRUCTURES

• Compressed Sparse Columns (CSC)
• List incoming edges for each vertex
• “Backward” traversal
• “Bottom-up” traversal
• “Pull”
• “Vertex-centric”

30

Frontier: CSR allows to skip
edges for inactive vertices (u∉F)

• Compressed Sparse Rows (CSR)
• List outgoing edges for each vertex
• “Forward” traversal
• “Top-down” traversal
• “Push”
• “Vertex-centric”

Pruning: CSC allows to skip edges
for pruned vertices (C(v)=false)

CSR-BASED EDGEMAP

frontier F := …;

frontier newF := { };

for vertex u ∈ V do

if u ∈ F then

for vertex v ∈ out(u) do

if C(v) and op(u,v) then

newF = newF ∪ { v };

fi od fi od

• Checking frontier is
compulsory: op(u,v) may be
called only if u∈F

• Pruning is not compulsory:
may call op(u,v) if
C(v)=false

• As op(u,v) is only a hand-
full of instructions, there is
little benefit in using C(v) in
CSR

CSC-BASED EDGEMAP

frontier F := …;

frontier newF := { };

for vertex v ∈ V do

if C(v) then

for vertex u ∈ in(v) do

if u ∈ F then

if op(u,v) then

newF = newF ∪ { v };

if not C(v) then break; fi

fi fi fi od od

• Pruning is highly effective in
CSC

• Allows to early terminate
visiting the in-edges of u

• Or skip in-edges alltogether

EVOLUTION OF
FRONTIER SIZE

Algorithms exhibit one of three
primary patterns:
• flat
• shrink
• grow then shrink

Source:	Shun	PPoPP’13

FRONTIER
REPRESENTATION

“Sparse” frontiers
• Few bits set
• Queue of active vertex IDs
“Dense” frontiers
• Many bits set
• Bitmap or array of booleans
Dynamically switch as frontier size
changes
[Hong et al, PACT’11]

CSR-BASED EDGEMAP
WITH SPARSE FRONTIER
frontier F := …; // queue

frontier newF := { }; // queue

for vertex u ∈ F do

for vertex v ∈ out(u) do

if C(v) and op(u,v) then

newF = newF ∪ { v }; // append

fi od od

• Reminder: dense frontiers:
for vertex u ∈ V do

if u ∈ F then

…

• Iteration over F is efficient
when stored as a queue

• When F is stored as a
queue, only CSR is efficient

• new frontier may contain
duplicates!

BREADTH-FIRST
SEARCH

Starting from a root vertex,
identify a shortest path to all
other vertices
Construct a spanning tree
-1 means parent unknown
In this case we start from
vertex 2
Requires a frontier: all
vertices that received a parent
in the previous round

3

4

5
0

parent:	-1

parent:	-1

parent:	(root)

parent:	-1

parent:	-1

parent:	-1 1

2

BREADTH-FIRST
SEARCH

”Top-down” traversal, “push”
Focus on out-edges

Old frontier:
New frontier:

1

3
24

5
0

parent:	-1

parent:	-1

parent:	(root)

parent:	-1

parent:	-1

parent:	-1parent:	-1 parent:	2

2

parent:	2 1

parent:	1			

1 5			
2			1 5			
4			

BREADTH-FIRST
SEARCH

”Bottom-up” traversal, “pull”
Focus on in-edges
Vertex complete as soon as
parent updated

Old frontier:
New frontier:

1

3
24

5
0

parent:	-1

parent:	-1

parent:	(root)

parent:	-1

parent:	-1

parent:	-1parent:	-1 parent:	2parent:	2

4

parent:	1			

1 5			

IMPACT OF CONVERGENCE
[Beamer, SC12]

Claimed	child:	parent[v]	updated	from	-1	to	a	vertex	ID
Failed	child:	parent[v]	updated	in	same	round	by	parent
Peer:	parent[v]	updated	in	same	round	by	sibling
Valid	parent:	v	was	encountered	in	a	round	prior	to	u

Bottom-up/pull	is	faster	in	the	middle	rounds
In	those	rounds,	many	vertices	are	active

round

round

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40

D
en

si
ty

 o
f f

ro
nt

ie
r

Iteration of algorithm

Bellman-Ford
PageRankDelta
5%

DIRECTION-
OPTIMISATION
d = (#active vertices +
#active edges) / #edges

if d > 5% then
dense frontier
if algorithm prefers

forward then
traverse CSR

else
traverse CSC

endif
else # d <= 5%

sparse frontier
traverse CSR

endif

40

Programmer’s choice
Little is known to guide this
We	will	shed	some	light	on	this

…	work	in	progress

Requires storage of both
CSC and CSR

[Beamer	SC’12]	[Shun	SPAA’13]

NUMA-AWARENESS

POLYMER

[Zhang PPoPP’15]
Remote access has higher
latency, lower bandwidth than local
access
Stores are more affected than
loads
Designed a scheme using graph
partitioning [Kyrola OSDI’12] and
privatization of vertex properties
We will discuss how their ideas
were rehashed in GraphGrind

EDGEMAP, VERTEXMAP
AND NUMA-AWARENESS

Goal: map code and data to
NUMA nodes
One type of arrays
• Properties (per vertex)
Two types of loops
• Loops over edges
• Loops over vertices
Two types of iteration
• Sparse frontier
• Dense frontier

vertex	property

in

out

RECAP: RACE CONDITIONS

In a concurrent program with race
conditions, the outcome of the program
may differ depending on the relative
execution speed of threads

Typical solutions:
• mutual exclusion
• atomic memory operations
• owner-computes

A pair of load and store instructions,
at least one of which is a store, that
access the same memory location

OWNER-COMPUTES

Decomposition based on partitioning input/output
data is referred to as the owner computes rule
Each partition performs all the computations
involving data that it owns
• Input data decomposition: A task performs all

the computations that can be done using these
input data

• Output data decomposition: A task computes
all the results in the partition assigned to it

Input	partitioning
Red	and	blue	processors

Output	partitioning

input

output

input

output

THE “MAP” IN EDGEMAP
AND VERTEXMAP

Edgemap:
• Iteration space: (u,v) ∈ E

where u, v ∈ V
• Dependencies are determined

by graph topology

Vertexmap:
• Iteration space: v ∈ V

vertex	property

in

out

graph
defines
dependencies

in

out

one-to-one
dependencies

NUMA-AWARE LAYOUT
FOR EDGEMAP

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3
How to split edgemap over NUMA
nodes?
• code
• data
Observation
Remote stores are more expensive
than remote loads [Zhang PPoPP ‘15]

Need to co-locate code with the
updated data
Edges are processed by CPUs
attached to the NUMA node that
holds the destination’s property

NUMA-AWARE LAYOUT
FOR EDGEMAP

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3
Goal
Determine cuts of { code, data }
such that performance is maximised
How?
Partition graph such that each
partition (NUMA node) has an equal:
1. #edges, #cuts [PowerGraph

OSDI’12] … breaks locality
2. #sources [X-stream SOSP’13]

… race conditions
3. #edges [Polymer PPoPP ‘15]

4. (α #destinations + #edges)
[Gemini OSDI’16]

NUMA-AWARE LAYOUT
FOR EDGEMAP
It depends! [GraphGrind ICS’17]

“Vertex-oriented” algorithms
• Best performance with equal

#destinations
• Frontier density mostly below 50%
• BFS, Betweenness Centrality,

Bellman-Ford

“Edge-oriented” algorithms
• Best performance with equal #edges
• Frontier density mostly close to 100%
• PageRank, SpMV, Belief Prop.,

PageRankDelta

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3
Edge-oriented	algorithms

Vertex-oriented	algorithms

NUMA-AWARE LAYOUT
FOR VERTEXMAP
“Vertex-oriented” algorithms
• Trivial

“Edge-oriented” algorithms
• Need to choose between balancing

compute and minimising traffic across
NUMA nodes

• Better to balance compute and incur
additional inter-node traffic
[GraphGrind ICS’17]

• Consequently, data is partitioned
differently from compute

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3

Edge-oriented	algorithms

in

out

Socket	0 Socket	1 Socket	2 Socket	3

NUMA-AWARENESS
CHOICES

• Baseline is CPU balance and
memory imbalance
• Implies remote accesses

during vertex map
• CPU imbalance

• No remote accesses
during vertex map

• Memory balance
• No remote accesses

during vertex map
• Many remote accesses

during edge map

-15%

-10%

-5%

0%

5%

10%

15%

Tw
itt

er

Fr
ie

nd
st

er

Tw
itt

er

Fr
ie

nd
st

er

Tw
itt

er

Fr
ie

nd
st

er

Tw
itt

er

Fr
ie

nd
st

er
CC PR PRDelta SpMV

CPU imbalance

Memory balance

Pe
rfo

rm
an
ce
	im

pr
ov
em

en
t

CAN WE MEET BOTH
REQUIREMENTS?
Have our cake and eat it too!

VEBO

in

out

NUMA	0 NUMA	1 NUMA	2 NUMA	3

Edge-oriented	algorithms

in

out

CPU	0 CPU	1 CPU	2 CPU	3

PERFORMANCE EVALUATION OF
NUMA-AWARENESS

0
20
40
60
80

Ligra Polymer

0

2

4

6

CC BFS BC BF

GraphGrind (NUMA)
Twitter

Friendster

0

5

10

CC BFS BC BF

GraphGrind (NUMA)

0
40
80

120
160

Ligra Polymer

Combination of optimisations [Sun ICS’17]
• Pruned CSC/CSR representation
• Tune partitioning to edge/vertex

algorithms
• NUMA-aware layout of vertex arrays
• CSC traversal: “caching” intermediate

values to minimise load/stores
• Full frontier: specialised version of code

that omits frontier check
• Sparse CSR traversal: no partitioning

applied
4-socket	2.6GHz	Intel	Xeon E7-4860	v2,	48	threads,	256	GiB

GRAPH
PARTITIONING

MEMORY LOCALITY

• Reuse Distance Distribution

1 10 100 1000 100001e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Reuse Distance

Fr
eq

ue
nc

y

1

4

8

24

192

384

384 192
24 8 4 1

384
192
24
8
4
1

• Misses Per Kilo-Instruction
(MPKI) – Twitter graph

0
2
4
6
8

10
12
14
16
18

4 8 12 24 48 96 192 384 480
Number of partitions

PageRank Bellman-Ford

VERTEX REPLICATION

When partitioning the edge set, a vertex may
appear in multiple partitions

Replication factor =
#repeated vertices / #unique vertices

Replication factor tends to |E|/|V| as number
of partitions grows

Replication implies space and runtime
overhead

0
10
20
30
40
50

0 100 200 300 400R
ep

lic
at

io
n

Fa
ct

or

Number of Partitions

Twitter Friendster Orkut USAroad

IMPLICATIONS OF
VERTEX REPLICATION

A different view on the same effect:

If we partition the edge set P-way, then a
vertex with degree d<P has zero edges in
at least P-d partitions. It has some edges
in at most d partitions.

Partitions of a sparse graph
are hyper-sparse

0%

20%

40%

60%

80%

100%

1 2 4 8 16

%
 V

ER
TI

C
ES

 W
IT

H
 Z

ER
O

 D
EG

R
EE

NUMBER OF PARTITIONS

Twitter Friendster Orkut USAroad

GRAPH DATA
STRUCTURES

• Compressed Sparse Columns (CSC)
• List incoming edges for each vertex
• “Backward” traversal (pull)
• “vertex-centric”

58

• Coordinate list (COO)
• A list of edges
• “edge-centric”

• Compressed Sparse Rows (CSR)
• List outgoing edges for each vertex
• “Forward” traversal (push)
• “vertex-centric”

No performance boost from
frontiers or pruning for COO

IMPLICATIONS OF
VERTEX REPLICATION
CSC and CSR are not scalable formats

• Increased storage
• Increased execution time to

traverse graph
Pruned CSC/CSR

• A.k.a. Compressed Compressed
Sparse Rows/Columns

• Omits zero-degree vertices
COO is scalable to any number of
partitions

• But inefficient for sparse frontiers

0

10

20

30

40

50

60

0 100 200 300 400

St
or

ag
e

Si
ze

 [G
iB

]

Number of Partitions

CSC/CSR CSC/CSR pruned COO

Twitter	graph

COO ADVANTAGE:
SPACE FILLING CURVES

Space filling curves define a
traversal order through a space
that tends to minimise memory
locality
Map nD order onto 1D order
Hilbert curve, Morton order (Z-
order), and many others
COO allows edges to be stored in
any order:
• CSR order
• CSC order
• Space filling curves

v

u

Edges are points in a 2D space:
For u,v in 0,…,|V|-1:

(u,v) = 1 if (u,v) ∈ E
(u,v) = 0 otherwise

Edgemap: visit all (u,v) in E

GRAPH PARTITIONING
BENEFITS
• Betweenness Centrality, Twitter • PageRank, Twitter

10 iterations

0.0

1.0

2.0

3.0

4.0

1 10 100 1000

Ex
ec

ut
io

n
Ti

m
e

Number of Partitions

CSR + atomics CSC, no atomics
COO + atomics COO, no atomics

0
5

10
15
20
25

1 10 100 1000

Ex
ec

ut
io

n
Ti

m
e

Number of Partitions

CSR + atomics CSC, no atomics
COO + atomics COO, no atomics

skips	irrelevant
edges

1	partition	–
multiple	threads

1	partition	–
1	thread

partitioned	CSR
out	of	memory

DIRECTION-OPTIMIZATION

• Ligra [Shun PPoPP’13]

d = (#active vertices +
#active edges) / #edges

if d > 5% then
dense frontier
if algorithm prefers

forward then
traverse CSR

else
traverse CSC

endif
else # d <= 5%

sparse frontier
traverse CSR

endif

• GraphGrind [Sun ICPP’17]
• 3-way heuristic
d = (#active vertices +
#active edges) / #edges

if d > 50% then
dense frontier
traverse partitioned COO

else if d > 5% then
medium-dense case
dense frontier
traverse CSC

else # d <= 5%
sparse frontier
traverse CSR

endif

LOAD BALANCE

LOAD BALANCE

Execution time/partition highly
dependent on the degree of
vertices
Reorder vertices
• in order of decreasing in-degree
• using list scheduling
VEBO: Vertex and Edge Balanced
Partitioning

Revisting edge	balance:
Two	partitions	with	3	edges
Which	partition	is	processed	faster?

0
0.1
0.2
0.3
0.4

4.6E+06 4.7E+06 4.8E+06

Ti
m

e
[s

]

Number of Edges

Original VEBO
0

0.1

0.2

0.3

0.4

0.E+00 5.E+05 1.E+06

Ti
m

e
[s

]

#Destination Vertices

Original VEBO
0

0.1
0.2
0.3
0.4

0.E+00 2.E+06 4.E+06

Ti
m

e
[s

]

#Source Vertices

Original VEBO Friendster
PageRank

VEBO BENEFITS

Partitions are processed faster as
a side-effect of reordering
Remote cache misses are traded
for local misses

0
2
4
6
8

10

Twitter Friendster

LLC local misses

Original VEBO

0
1
2
3
4
5

Twitter Friendster

LLC remote misses

Original VEBO

0.000

0.005

0.010

0.015

Twitter Friendster

TLB misses

Original VEBO

0.00
0.05
0.10
0.15
0.20

Twitter Friendster

Branch mispred.

Original VEBO

0
3
6
9

12

Twitter Friendster

LLC misses

Original VEBO

PageRank

PERFORMANCE

L: Ligra, P: Polymer, Adaptive:
GraphGrind with 3-way ”direction-
optimization”0

20

40

60

80

BP PR PRDelta

Ti
m

e
[s

]

L P Adaptive

0
1
2
3
4
5

CC SPMV BFS BC BF

Ti
m

e
[s

]

L P Adaptive

0

50

100

150

200

BP PR PRDelta

Ti
m

e
[s

]

L P Adaptive

0

5

10

15
Ti

m
e

[s
]

L P Adaptive

Twitter

Friendster

PERFORMANCE

Comparing Ligra, Polymer (NUMA-aware),
and 3 versions of GraphGrind
Twitter graph
4-socket 2.6GHz Intel Xeon E7-4860 v2, 48
threads, 256 GiB
Similar results hold for other graphs
VEBO relabels vertex IDs to achieve load
balance

0

20

40

60

80

BP PR PRDelta

Ti
m

e
[s

]
Ligra
Polymer
GraphGrind (NUMA)
GraphGrind (Locality)
GraphGrind + VEBO

0

1

2

3

4

5

CC SPMV BFS BC BF

Ti
m

e
[s

]

Ligra
Polymer
GraphGrind (NUMA)
GraphGrind (Locality)
GraphGrind + VEBO

CONCLUSION AND
OUTLOOK

CONCLUSION AND
OUTLOOK
Scale-free properties of graphs make it hard to achieve high-performance
Code itself is short – devil is in the detail
Graph partitioning crucial: NUMA-locality; avoiding atomics; improving memory locality
Some open questions:
• What are the limits on memory efficiency?
• What is the cause of performance difference between CSR/CSC/COO?
• Do the principles behind GraphGrind apply to distributed memory systems?
• How well does the programming model capture graph algorithms?

REFERENCES
• Beamer, S., Asanovic, K. and Patterson, D. Direction-Optimizing Breadth-First Search. SC’12
• Besta, M., Podstawski, M., Groner, L., Solomonik, E. and Hoefler, T. To Push or To Pull: On Reducing Communication and

Synchronization in Graph Computations, IPDPS’17
• Gonzalez, J. E., Low, Y., Gu, H., Bickson, D. and Guestrin, C. PowerGraph: distributed graph-parallel computation on natural graphs,

OSDI’12
• Hong, S., Tayo, O. and Olukotun, K. Efficient parallel graph exploration on multi-core CPU and GPU. PACT’11
• Kang, U., Tsourakakis, C. E., and C. Faloutsos. PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations

ICDM’09
• Kyrola, A., Blelloch, G. E. and Guestrin, C. GraphChi: Large-Scale Graph Computation on Just a PC. OSDI’12
• Roy, A. and Mihailovic, I. and Zwaenepoel, W. X-stream: Edge-centric graph processing using streaming partitions, SOSP’13
• Sharma, A., Jiang, J., Bommannavar, P., Larson, B. and Lin, J. GraphJet: Real-Time Content Recommendations at Twitter. PVLDB’16
• Shun, J. and Blelloch, G. E. Ligra: A Lightweight Graph Processing Framework for Shared Memory. PPoPP’13
• Sun, J., Vandierendonck, H. and Nikolopoulos, D. S. GraphGrind: addressing load imbalance of graph partitioning. ICS’17
• Sun, J., Vandierendonck, H. and Nikolopoulos, D. S. Accelerating Graph Analytics by Utilising the Memory Locality of Graph

Partitioning. ICPP’17
• Sun, J., Vandierendonck, H. and Nikolopoulos, D. S. VEBO: A Vertex-and Edge-Balanced Ordering Heuristic to Load Balance Parallel

Graph Processing. arXiv:1806.06576. 2018
• Zhang, K., Chen, R. and Chen, H. NUMA-Aware Graph-structured Analysis. PPoPP’15
• Zhu, X. and Chen, W. and Zheng, W. and Ma, X. Gemini: A Computation-Centric Distributed Graph Processing System. OSDI’16

