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Overview
Goals:  

1. Introduce the most important ideas and systems in 
VM design and implementation from a historical 
perspective 

2. Supply background for this afternoon’s lab, taught 
by Chris Seaton.  



Overview
Audience: I am assuming the typical user’s 
understanding of VM internals (i.e., not much). 

Limitations: can’t be detailed, or anywhere near 
complete. I’m deliberately omitting: 

• System VMs and binary translation 

• Garbage collection techniques 

• interpretation and compiler history (outside of 
language VMs)



Lab

Led by Chris Seaton, you will: 

• Download a development environment for GraalVM 

• Inspect and modify an implementation of a simple 
language 

• Examine the outputs of the various components of 
the system



CS294-113 
A Shameless Plug

• In 2015 I was invited to teach a graduate course on VMs at UC 
Berkeley. 

• The result is CS294-113: Virtual Machines and Managed Runtimes. 

• Available on the web (slides, video, exercises) at 
www.wolczko.com/CS294. 

• ~30 hours of video, over 1200 slides. Estimated 200+ hours to 
complete coursework. 

• Guest appearances: Deutsch & Schiffman, Ungar, Click, Bak, Bolz, 
Würthinger, Van De Vanter 

• Taken and completed by >20 UCB students.



Who am I?
• Architect at Oracle, formerly a Distinguished Engineer at 

Sun. Before that I did a PhD and postdoc at Manchester. 

• I’ve been mostly in research, with occasional forays into 
product development. 

• I started my career in VMs at the beginning of a golden 
era (1983), and have seen many developments up close 
(esp. Java, at Sun). 

• I’ve been fortunate to work with and talk to many VM 
pioneers.



What do I mean by 
“history”?

• I am not a professional historian 

• I don’t even play one on TV 

• I am more a participant and witness than a 
chronicler 

• Hence, this is a subjective history 

• It is laced with my opinions — some of which may 
be are wrong.



1. Introduction to VMs



Generic VM architecture

Virtual Machine

guest system

host system

guest ISA

host ISA

ISA = Instruction Set Architecture



What is a Virtual Machine?
• A software implementation of a machine architecture  

• Software needs hardware to run, so hardware is implied 
too 

• Two machine architectures are involved: guest and host  

• The guest may be defined only by software or be an 
emulation of a real machine (i.e., also available as a 
hardware implementation) 

• The host is usually hardware, but need not be (e.g., a 
language VM written in Java running on the JVM)



A typical VM

VM software

virtualized application

hardware

VM ISA

hardware ISA



Process and System VMs



Process and System VMs
• A Process VM implements an ABI (Application 

Binary Interface: the combination of a user-level 
ISA and an OS system call interface)



Process and System VMs
• A Process VM implements an ABI (Application 

Binary Interface: the combination of a user-level 
ISA and an OS system call interface)

• A System VM implements both the hardware 
user and system ISA (i.e., including privileged 
instructions)



Process and System VMs
• A Process VM implements an ABI (Application 

Binary Interface: the combination of a user-level 
ISA and an OS system call interface)

• A System VM implements both the hardware 
user and system ISA (i.e., including privileged 
instructions)

Will not consider these further here — see the full 
course for more info.



Language VMs

• A language-specific process VM 

• The VM presents an OS-like interface to 
applications in the chosen language, as well as an 
ISA designed specifically for the semantics of the 
chosen language.



2. Interpretation 
(and compilation)



What is an interpreter? 

An interpreter for a source language L is a 
mechanism for the direct execution of all programs 
from L, which executes each element of the source 
program in turn without reference to other elements



Some consequences
• Performance is typically uniform and predictable 

(e.g., every execution of the same node is the 
same and has the same performance, modulo 
micro-architectural effects in the host machine 
[caching, branch prediction, etc.]) 

• Typically slow, as there is much overhead in 
deciding how to interpret a specific language 
element, and no scope for optimization across time 
or program space



In contrast: compilation

• A compiler transforms a program in a source 
language S to an equivalent program in a target 
language T (S≠T). 

• It does not execute the source program at all (cf. 
interpretation)



Interpretation is usually preceded 
by some kind of compilation

• It is rare that the source program of any non-trivial language is 
executed directly by an interpreter; usually it is transformed by a 
parser or compiler into some intermediate representation (IR) 

• The IR removes lexical noise such as comments, white space and 
other formatting 

• Don’t want to penalize commentary and formatting by increasing 
execution time 

• Lexemes are either condensed into “atoms” (identifiers, constants) 
or abstracted/combined into operations (keywords, operators) 

• Elements are reordered into execution order (e.g., operators in an 
expression)



The interpreter illusion
• One common goal of an advanced VM implementation 

is to preserve the illusion of interpretation while 
maximizing performance (e.g., by compiling on-the-fly). 

• Can be challenging! For example, compilers commonly 
reorder actions. 

• The trick is to carefully define/discover what is 
observable, and what is not 

• Or: “cheat, but don’t get caught”



AST interpreters for  
high-level languages

• AST = Abstract Syntax Tree 

• The tree produced by a parser of a high-level 
language compiler 
 
do { 
  i++;  
} while (i < n);

do-while

++ int<

i ni



Example: interpreting a 
simple expression language

• Language elements: variables holding an integer; 
integer constants; expressions involving simple 
arithmetic; assignments 

3+4 
b=2*a+1 
x*x+x+5



example input

=

b +

a

1

2

*

b=2*a+1



Implementation using 
objects

• ASTs and interpreters are a natural fit for object-
oriented programming. 

• Each kind of node is a class 

• Use inheritance for better factoring 

• Use method dispatch for evaluation



class ASTNode {  
 …stuff common to all nodes…} 

abstract class ExprNode extends ASTNode 
{  
  abstract int eval();  
} 

In Java…



// all trivial constructors elided 

class ConstNode extends ExprNode {  
  final int val;  
 
  int eval() { return val; }  
  …  
} 



class AddNode extends ExprNode {  
  ExprNode left, right;  
  int eval() {  
    return left.eval()+right.eval(); }  
  …  
}  

Other operator nodes look almost identical.



class VarNode extends ExprNode {  
  int val;  
  void set(int val) { this.val = val; }  
  int eval() { return this.val; }  
  …  
} 



class AssignNode extends ExprNode {  
  VarNode var;  
  ExprNode rhs;  
  int eval() {  
    int rhsVal=rhs.eval();  
    var.set(rhsVal);  
    return rhsVal; }  
  …  
}



Adding statements
abstract class StmtNode extends ASTNode { 
  abstract void eval();  
}  
 
class SimpleStmtNode extends StmtNode {  
  ExprNode e;  
  void eval() { int ignored = e.eval(); } 
}  
 
class SeqNode extends StmtNode {  
  ArrayList<StmtNode> seq;  
  void eval() {  
   for (StmtNode s : seq) { s.eval(); }  
  }  
}



Control flow is easy…
sometimes

…when the semantics are local and equivalent in the 
implementation language. Example: consider 
interpreting a do-while expression.  
 
class DoWhileNode extends StmtNode {  
  StmtNode body; ExprNode cond;  
  void eval() {  
    do body.eval() while (cond.eval() != 0); 
  }  
}  



But sometimes not so 
easy…

• Example: break from within a loop  

• Why doesn’t this work? 
 
class BreakNode extends StatementNode 
{  
  void eval() { break; }  
}



Solutions to control flow 
problems

• Add a break-out path for each possible enclosing 
node type 

• Messy when you need to return a value and a 
break-out indication if the implementation 
language can’t return a pair 

• Use host language exceptions



Break, using exceptions

StmtNode: abstract void eval() throws 
BreakException  
 
class BreakNode … {  
  void eval() throws BreakException {  
    throw new BreakException();  
  }  
}



Break, using exceptions
class DoWhileNode … {  
  StmtNode body;  
  ExprNode cond;  
 
  void eval() throws BreakException {  
    try {  
      do {  
        body.eval();  
      } while (cond.eval() != 0);  
    catch (BreakException b) {};  
  }



Interpreter performance 
considerations

Let’s look at what it takes to 
interpret b=2*a+1  
 
eval(〖b=2*a+1〗)  
  eval(〖2*a+1〗) 
    eval(〖2*a〗) 
      eval(〖2〗) ⇾ i 
      eval(〖a〗) ⇾ j 
      i * j ⇾ k 
    eval(〖1〗) ⇾ l 
    k + l ⇾ m 
  assign m to 〖b〗

• Every eval() is a virtual call 
and return 

• How predictable is the flow? 

• Max stack depth is 4 frames 

• How many loads just to walk 
the tree?



AST interpretation: 
conclusions

• Slow (typically 100—1000x slower than best possible)

• ASTs are big 

• But, easy to write and reason about; portable 

• Source code as the distribution medium (cf. compilation) — lots of pros and 
cons (some of which are non-technical) 

• See [Franz ’94] for another variation on the theme 

• Tightly coupled to the source language 

• Languages change faster than instruction sets…which leads us to: bytecodes. 

• We’ll revisit AST interpretation near the end, to see how it can be made fast.



3. Language VMs
Part 1, 1966—circa 2000



What is a Language VM?
• A language-specific Process VM 

• The VM presents an OS-like interface to applications as 
well as an ISA 

• Often created together with, or during the evolution, of the 
associated language. 

• Typically embodies language-specific concepts and 
semantics. 

• A relatively small jump from language semantics to VM 
interface.



Timeline
• BCPL 

• Pascal 

• Smalltalk 

• Self 

• Java 

• JavaScript 

• Truffle/Graal

1966 

1972–1977 

1976–1984 

1987–1994 

1997— 

2008— 
 
2014—



BCPL
• Basic CPL (Combined Programming Language) 

• CPL was a broad-spectrum language conceived by Christopher 
Strachey at Cambridge and others in the early 1960s. 

• Martin Richards* (Cambridge) designed the BCPL subset [Basic 
CPL] in 1966 (which was implemented in 1967) 

• Used for systems programming (compilers, operating systems) 

• BCPL was a major influence on the design of C 

• The compiler emitted OCODE, which could be translated to native 
machine code; Cintcode was a bytecode for interpretation 

* Of Richards benchmark fame



Interpretation technique #2: 
Bytecode interpretation

• Idea: Real machines (ie hardware) don’t have the issues of 
AST interpretation; let’s mimic a real machine 

• Design an instruction set architecture for the language being 
interpreted, and write an interpreter for that ISA 

• Real machines expose many details which are irrelevant to the 
guest language (e.g., the address of a variable on the stack) 

• Omit these details from the ISA spec., usually by 
abstraction 

• Example: use a stack, instead of registers



Example
• Spec. of expression language machine, using a 

stack of ints: 

push n … Push an integer constant on the stack 

push v … Push the value of variable v on the stack 

op … (op=add|sub|mul|div) Pop the top two ints, apply 
         op, push the result 

pop v… Pop the stack into variable v



Example: control flow
• Index the bytecodes in the program 

• Add conditional and unconditional branch 
instructions 

jump n … Jump to bytecode at offset n 

jeq n … Pop a value from the stack and jump to n if it 
is equal to zero 

Ditto jne, jlt, jle, …



Bytecode interpreter
pc = address_of_first_instruction();  
forever do:  
    b = fetch_bytecode(pc);  
    switch (opcode(b))  
    case push:  push(get_value(field(b));  
    case pop:    store(pop(), field(b));  
    case add:    push(pop() + pop());  
    … 
    case jump:  pc = pc + field(b); 
    …



Performance
• A bytecode interpreter is typically a little faster than 

an equivalent AST interpreter — but not by much. 

• It spends most of its time figuring out what to do, 
and only a little doing it. 

• It’s an easy way to make your language 
implementation portable. 

• Modest optimizations can be done in the compiler 
from language to bytecode.



Pascal p-code
• Origins in a Pascal compiler developed in the 

mid-1970s at ETH Zurich 

• Used in the UCSD p-System (OS) released in 1978, 
deployed widely for commercial use 

• Stack machine, very simple, originally interpreted 

• Later: Hardware implementations: Western Digital’s 
Pascal MicroEngine, NCR, later Lilith (Modula-2 M-
code)



Smalltalk

From the mid-1970s to the mid-1980s, Smalltalk took 
up the running in VM technology.



It’s 1969…

• Alan Kay’s Ph.D. thesis, The Reactive Engine, 
describes a future of personal, portable computers 
and speculates on how they will be programmed 
and used.



Early 1970s
• In 1970, Kay joins Xerox PARC (just 

created), forms the Learning 
Research Group, attracts other 
researchers, including Adele 
Goldberg. 

• The Smalltalk language and system 
are invented and developed 
through several versions. The aim is 
to build a system capable of being 
used by children to learn.



Smalltalk-76 and the Alto
• PARC develops the Alto 

workstation — the “interim 
Dynabook” — a personal 
computer with high-resolution 
bitmapped graphics, local 
storage and a fast network 
connection.

• Smalltalk-76 is honed 
for the Alto. BitBlt, 
copy and paste are 
invented.



1981–3: Smalltalk-80 is 
released to the world

• BYTE special issue 
(Aug 1981)



1981–3: Smalltalk-80 is 
released to the world

• The “colored books” (1983)



Smalltalk-80 Virtual Machine

• Defined by a reference implementation (in 
Smalltalk!) in the Blue Book 

• Bytecode ISA, object memory 

• Classes, metaclasses, method activations are 
objects!



1981–3: Smalltalk-80 is 
released to the world

• The tape (1983) 

• All the objects 

• Roll your own VM! 

• Slow! (see Green Book)



PS
• Efficient Implementation of the Smalltalk-80 System,  

L Peter Deutsch and Allan M Schiffman, POPL 
1984



The paper: contributions
• Just-In-Time (JIT) translation of Smalltalk bytecode 

to machine code; code caching and lookup 

• Inline caching of message send targets 

• On-demand conversion of contexts (activation records) 
from on-stack to hybrid and heap-allocated forms 

• Deferred reference counting (described in a 1976 
paper by Deutsch & Bobrow) 

• For more detail, watch CS294 session on youtube.



A JIT compiler eliminates 
interpreter dispatch overhead

• Simple elimination of interpreter overhead leads to 
a significant speedup. This is because we perform 
bytecode decoding only once, and the generated 
code does not have the overhead of the interpreter 
loop (or other dispatch for more advanced forms of 
interpretation).



Self 
1987–1995

• Language designed in 1987 as a successor to 
Smalltalk; even simpler and more regular 

• Objects, slots, methods, messages 

• VM had only 8 bytecodes! 

• Stanford & PARC 1987—1992  
Sun Labs 1992—1995



Self implementation 
innovations

From JIT to adaptive, feedback-driven optimization (to 
come after JIT compilation): 

• Optimizing compilation of a dynamic language

• Type feedback 

• Adaptive optimization 

• PICs, maps, generational heap 

• C++ implementation tricks



Challenges of dynamic 
languages

• Types are unknown ahead of time 

• Types within an expression may vary over time 

• Intermingling of structured and primitive values 

• Varying code 

• Programmer changes  

• Self-modifying code



Self 3.0 
(released 1993)

• Feedback-driven adaptive optimization (Urs 
Hölzle’s thesis, 1994): 

• Polymorphic Inline Caches (PICs) and counters 

• Adaptive inlining 

• Deoptimization



Inlining
• Inlining is an important optimization, not just 

because it removes call overhead, but because it 
increases the size of the compilation unit, and 
exposes more code to optimization. 

• Improperly applied, it can lead to code bloat. Prior 
to its application in dynamic compilers, automatic 
inlining was of marginal use, because it could not 
be applied wisely.



What inlining enables
• Connects data flows across methods 

• Connect control flows across methods 

• Turns exceptions and other non-local control into 
jumps 

• Combined data- and control-flow analysis can, e.g., 
eliminate closures entirely. 

• Opens the door to further optimizations (including 
more inlining)



Self 3 architecture
• JIT-compile code on first execution 

• Instrument the emitted code to measure execution 
frequencies, and observe types in use and actual 
call edges 

• Recompile hotspots, using gathered info to drive 
inlining and other optimizations 

• Result: rapid execution with acceptable warm-up



Dynamic deoptimization
• Many potential optimizations are speculative: they 

are based on the current state of the program and/
or data, which may change. 

• Example: Java class loading can invalidate 
inlining decisions 

• If this occurs, we need a technique to recover the 
state of the computation, abandon the incorrect 
optimizations, and proceed with the correct 
behavior.



Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);} 



Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);} 

foo(i, j) { bar(); return baz(i, j); }



Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);} 

foo(i, j) { bar(); return baz(i, j); }

baz(p, q) { return p+q; }
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foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

baz(p, q) { return p+q; }



Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);} 

foo(i, j) { bar(); return baz(i, j); }
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m’(m) foo baz 

inlining tree



Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);} 

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }

m’(m) foo baz 

inlining tree
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inlining tree
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foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }

frame for bar
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Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);} 

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }baz(p, q) { return p*q; }

frame for bar

m’(m) foo baz 

inlining tree

frame for …



Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);} 

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }baz(p, q) { return p*q; }

frame for barframe for foo:  
in call to bar()

frame for m:  
in call to foo() 

x = 3 
y = 4

m’(m) foo baz 

inlining tree

frame for …



Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);} 

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }baz(p, q) { return p*q; }

frame for barframe for foo:  
in call to bar()

frame for m:  
in call to foo() 

x = 3 
y = 4

m’(m) foo baz 

inlining tree

frame for …frame for bar: 
return to foo()



On-stack replacement
Suppose we have a long-running loop. When we first 
execute the loop, all the methods are unoptimized. 
Part way through, we trigger a counter and invoke 
optimizing compilation of the loop and its callees. 
How do we transition to the optimized code before 
waiting for the loop to end? 

Solution: use the same frame-replacement 
techniques, except this time replacing unoptimizing 
frames with their optimized counterparts.



Java  
1995—present 

VMs enter the mainstream



The Java Virtual Machine

• Java emerged shortly after the World Wide Web 
was invented; when dissatisfaction with C and 
especially C++ as an application language was 
high; and when OOP was hugely popular. 

• Portable binaries + type-safe + objects



The JVM
• The JVM was based on familiar ideas: a machine-

independent bytecode ISA; automatic memory 
management (GC); objects and methods. 

• It added a class-level distribution format, sandbox 
security (applets), static typing and bytecode/class 
verification. 

• Massive adoption made bytecode VMs and those 
implementation techniques ubiquitous. 



JVM developments  
1995–2000

• Early JVMs (1995-1998) were just playing catch-up 
with Smalltalk and Self. 

• Many simple JIT compilers were written 

• Java’s built-in concurrency added new 
challenges and opportunities 



HotSpot
• The “Java HotSpot Virtual Machine” (1999), incorporated many of 

the techniques from Self…unsurprising, as developed by an ex-
Selfer, following a pivot from Smalltalk: 

• Inlining, PICs, counters, deopt 

• Added new techniques for Java’s peculiarities, and careful 
engineering to take advantage of static types: 

• Fast locking, virtual table dispatch, … 

• A subsequent release incorporated the Server Compiler (C2), which 
brought SSA-based heavy-duty code optimization techniques, 
taking performance well beyond that of Self-era compilers (such as 
the first HotSpot compiler, and the Client Compiler (C1)).



Later innovations used in 
JVM implementations

• Escape analysis 

• Biased locking 

• Thread-local allocation buffers 

• Separable compiler(s) 

• Concurrent GC 

• Lots of techniques



4. Language VMs
Part 2, 2000–2010



Proliferation
• By the mid-2000s, language VM technology had 

been widely deployed (on perhaps a billion 
devices, from cellphones to supercomputers) 

• The bulk of the implementation effort had gone into 
JVMs (Sun, IBM) and the CLR (Microsoft). 

• In contrast, the performance of other managed 
languages (JavaScript, Python, Perl, etc.) was 
lackluster.



JavaScript Wars
• Language was invented by Eich at Netscape in 1995 

• By mid-2000s, it was still the only viable language of the web, but was 
interpreted. 

• OK for web-page one-liners, not for web applications. AJAX made 
sophisticated applications possible. 

• In the late 2000s, several companies invested heavily to develop high-
performance JavaScript VMs: 

• Mozilla: TraceMonkey — trace compilation comes to language VMs 

• Google: V8 — very similar to Self (maps) and HotSpot 

• Apple: WebKit/SquirrelFish (later Nitro)



Trace compilation
• In a binary translator, traces are a more obvious choice 

for translation unit. In a language VM, the linguistic 
constructs are available — so why use traces? 

• Linear traces are easy to compile quickly 

• Inlining comes for “free” — traces span call 
boundaries 

• Well-described by Gal et al., HotPathVM, 2006 (a JVM) 

• Used in Mozilla’s TraceMonkey, c.2008



Some disadvantages of writing a VM 
in C/C++

• Lack of safety — occasionally essential 

• Two runtimes with differing views of the world: 
managed and unmanaged 

• Result: building a high-performance VM in C/C++ 
requires extraordinary skill and great effort.



Writing a VM in a high(er)-
level language

• These issues have led to attempts to write VMs in 
other languages, to decrease the skill and effort 
level required. Desiderata: 

• Higher-level (e.g., type- and memory-safe);  

• Better low-level control when needed (to avoid 
assembly) 

• Uniform and preferably automatic handling of 
references, safe points, calling conventions, etc.



Metacircularity — with 
performance

Some systems generated C from a higher-level 
language (e.g., Squeak, which used Smalltalk). That 
only address part of the problem. 

To get performance together with the benefits of a 
higher-level language, we can adopt an architecture 
in which a single compiler can serve to build the VM 
and also to compile applications.



Metacircularity — with 
performance

preexisting VM

compiler source

bytecode compiler 
(e.g., javac)
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Metacircularity — with 
performance

VM source

VM binary 
(incl. compiler)

compiler bytecode

preexisting VM

compiler source

application 
bytecode

application n-code



Advantages 

The same compiler is being used for the VM as for 
the application 

• Common calling convention 

• Can inline VM code into application 

• Common handling of safe points, references



5. Multilingual VM 
Frameworks 

2010—present



Relative speeds of various languages

3

1
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100

1000
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(smaller is 
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From the Computer Language Benchmarks Game, ~2013



Can we build a language-
independent VM framework in 
which many languages can be 

implemented (more) easily?



What is needed to generate 
code for a user program?

1. The user program 

2. Expressed semantics of each language element 

Combine the semantics of each element of the user 
program and generate code for the combined result. 

This is what a traditional compiler does. But are there 
alternatives?



Compilation without a guest language compiler: 
1. Metatracing

• Express the language semantics as a bytecode 
interpreter in a relatively high-level language 

• Modify the interpreter to gather bytecode execution 
traces from the guest program 

• Combine the traces with the interpreter’s actions to 
generate code for each trace; like unrolling the 
interpreter. 

• Together with some hints and optimizations, can 
generate pretty good code.



PyPy
• Originally, a Python VM written in a subset of Python, 

RPython (Restricted — types can be inferred, and it is 
easily translated). Generated C code or LLVM IR. 

• Subsequently, a framework for the implementation of 
multiple languages via meta-tracing. 

• Tracing the meta-level: PyPy's tracing JIT compiler, 
Bolz et al., 2009. 

• Good performance for a variety of languages: Python, 
Ruby, Prolog, PHP, …



Compilation without a guest language compiler: 
2. Partial evaluation of ASTs

• Express the language semantics as an AST 
interpreter in a relatively high-level language 

• Combine the guest application’s ASTs with the 
interpreter semantics; generate code



Example

Consider a simple expression AST interpreter: 

How can we compile code for an expression such as 
b=2*a+1?



class ASTNode { …stuff common to all nodes…} 

abstract class ExprNode extends ASTNode { 
  abstract int eval(); 
} 

class ConstNode extends ExprNode { int val; int eval() { return val; } … } 

class AddNode extends ExprNode { 
  ExprNode left, right; 
  int eval() { return left.eval()+right.eval(); … }  
…} 

class VarNode extends ExprNode { 
  int val;  
  void set(int v) { val=v; } 
  int eval() { return val; } … 
…} 

class AssignNode extends ExprNode { 
  VarNode var; ExprNode rhs; 
  int eval() { int rhsVal=rhs.eval(); var.set(rhsVal); return rhsVal; }  
…}



ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); }
VarNode>eval() { return val; } 
AssignNode>eval() { return var.set(rhsVal.eval()); }  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Compiling a simple 
expression

b=2*a+1

ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); } 
MulNode>eval() { return left.eval()*right.eval(); } 
VarNode>eval() { return val; }  
AssignNode>eval() { return var.set(rhsVal.eval()); }

b.var.set(                                  )

=

b +

a

1

2

*

2 * a.val + 1



Partially evaluation of the 
interpreter is compilation

• So one way to achieve language-independent 
compilation is to write a language interpreter and a 
partial evaluator for the language in which the 
interpreter is written 

• To compile a different language, we just need a 
new interpreter, but not a new partial evaluator. 

• Partial evaluation blends interpretation and 
compilation.



Partial evaluation alone is 
not enough

• Partial evaluation in this way has been known about 
for a long time [Futamura 71], but it hasn’t helped 
in implementing dynamic languages efficiently. 
Why?  

• The problem is the lack of type and other 
behavioral information, which only becomes 
manifest at run time.



What is needed to generate 
good code for a user program?

• Express semantics of each language element 

• Express what the user program is doing/likely to do 
in concrete terms (hotspots, types) 

• Combine the semantics of each element of the user 
program with the usage information and generate 
code for the expected behavior.
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What is needed to generate 
good code for a user program?

• Express semantics of each language element 

• Express what the user program is doing/likely to do 
in concrete terms (hotspots, types) 

• Combine the semantics of each element of the user 
program with the usage information and generate 
code for the expected behavior.

✓AST interpreter provides this directly

✓Profile and specialize within the AST

✓Use the interpreter and the profiles to generate 
specialized code. Deopt when wrong.



Specializing ASTs during 
interpretation

• One solution is to gather profile data during AST 
interpretation. 

• But to get faster interpretation and profiling data, 
we can specialize the AST nodes at run-time based 
on each node’s observed behavior. 



Example: addition
Object add(Object a, Object b) { 
   if (a instanceof Integer && b instanceof Integer) { 
      return (int) a + (int) b; 
   } else if (a instanceof String  
              && b instanceof String) { 
      return (String) a + (String) b; 
   } else { 
      return genericAdd(a, b); 
   } 
}
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Example: addition
Object add(Object a, Object b) { 
   if (a instanceof Integer && b instanceof Integer) { 
      return (int) a + (int) b; 
   } else if (a instanceof String  
              && b instanceof String) { 
      return (String) a + (String) b; 
   } else { 
      return genericAdd(a, b); 
   } 
}

Object add(Object a, 
           Object b) { 
   return genericAdd(a, b); 
}

int add(int a, 
        int b) { 
   return a + b; 
}

String add(String a, 
           String b) { 
   return a + b; 
}



Type transitions

Uninitialized

Stringint

generic
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In pseudo-code 
(this is not what you actually write)

abstract class Node { 
   Node parent; // every node in the AST has a single parent, so that it can replace itself  
…}

abstract class BinaryNode extends ExprNode { 
   ExprNode leftChild, rightChild; 
…}

abstract class AddNode extends BinaryNode { 
  Object eval();  
  int evalInt() throws UnexpectedResult;  
  String evalString() throws UnexpectedResult;  
…}  

class UninitializedAddNode extends AddNode {  
  Object eval(); // evaluate and replace with the appropriate specializer 

class IntAddNode extends AddNode { 
  int evalInt() throws UnexpectedResult; // assumes ints, replace with Generic otherwise

class StringConcatNode extends AddNode { 
  String evalString() throws UnexpectedResult; // assumes Strings, replace with Generic otherwise

class GenericPlusNode extends AddNode { 
  Object eval(); // implement user-defined +
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More pseudo-code
class UninitializedAddNode extends AddNode { 
  Object eval() {  
     Object a = leftChild.eval();  
     Object b = rightChild.eval();  
     if (a instanceof Integer && b instanceof Integer) 
        return this.replaceWithIntAddNode(a, b); 
     else if (a instanceof String && b instanceof String) 
        return this.replaceWithStringConcatNode(a, b); 
     else  
        return this.replaceWithGenericPlusNode(a, b); 
  }  
  …  
} 



More pseudo-code
class IntAddNode extends AddNode {  
    int evalInt() throws UnexpectedResult { 
      int a;  
      try {  
        a = leftChild.evalInt();  
      } catch {UnexpectedResult ex) {  
        throw rewrite(ex.result, rightChild.eval()); 
      }  
      int b;  
      try {  
        b = rightChild.evalInt();  
      } catch {UnexpectedResult ex) {  
        throw rewrite(a, ex.result);  
      }  
      return a+b;  
   }  
…



Compiling the specialized 
ASTs

• ASTs are also decorated with counters to do self-
profiling 

• When a hot AST node is found, the compiler is 
invoked 

• It walks the AST, and uses the specialization and 
profile information to guide inlining. 

• Unexpected types result in deoptimization
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Compiling the specialized 
AST

x

1

2

*

+

class IntAddNode extends AddNode {  
    int evalInt() throws UnexpectedResult { 
      int a; 
      try { 
        a = {  
           a = 2; 
           b = var[‘x’] 
           return a*b 
        } 
        b = 1  
 
 
      } 
      return a+b; 
   } 
…
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Implementation language 
desiderata

• Must handle machine types

• Exception paths for unexpected types

• Efficient code generation

• Code processing/generation to handle boiler-plate

Java with compiler directives, annotations and an 
annotation processor ⇒ the Truffle DSL



5. Wrap-up



The Future

• Multi-lingual support is coming here 

• Further proliferation as VMs get easier to build 

• New languages? New DSLs? 
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