
A Concise
and Opinionated 

History 
of

Virtual Machines 

Mario Wolczko
Architect, Oracle Labs

© 2018 Oracle, Mario Wolczko

The following is provided for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making
purchasing decisions. Oracle reserves the right to alter its development
plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle
product or service remains at the sole discretion of Oracle. Any views
expressed in this presentation are my own and do not necessarily reflect
the views of Oracle.

Overview
Goals:

1. Introduce the most important ideas and systems in
VM design and implementation from a historical
perspective

2. Supply background for this afternoon’s lab, taught
by Chris Seaton.

Overview
Audience: I am assuming the typical user’s
understanding of VM internals (i.e., not much).

Limitations: can’t be detailed, or anywhere near
complete. I’m deliberately omitting:

• System VMs and binary translation

• Garbage collection techniques

• interpretation and compiler history (outside of
language VMs)

Lab

Led by Chris Seaton, you will:

• Download a development environment for GraalVM

• Inspect and modify an implementation of a simple
language

• Examine the outputs of the various components of
the system

CS294-113
A Shameless Plug

• In 2015 I was invited to teach a graduate course on VMs at UC
Berkeley.

• The result is CS294-113: Virtual Machines and Managed Runtimes.

• Available on the web (slides, video, exercises) at
www.wolczko.com/CS294.

• ~30 hours of video, over 1200 slides. Estimated 200+ hours to
complete coursework.

• Guest appearances: Deutsch & Schiffman, Ungar, Click, Bak, Bolz,
Würthinger, Van De Vanter

• Taken and completed by >20 UCB students.

Who am I?
• Architect at Oracle, formerly a Distinguished Engineer at

Sun. Before that I did a PhD and postdoc at Manchester.

• I’ve been mostly in research, with occasional forays into
product development.

• I started my career in VMs at the beginning of a golden
era (1983), and have seen many developments up close
(esp. Java, at Sun).

• I’ve been fortunate to work with and talk to many VM
pioneers.

What do I mean by
“history”?

• I am not a professional historian

• I don’t even play one on TV

• I am more a participant and witness than a
chronicler

• Hence, this is a subjective history

• It is laced with my opinions — some of which may
be are wrong.

1. Introduction to VMs

Generic VM architecture

Virtual Machine

guest system

host system

guest ISA

host ISA

ISA = Instruction Set Architecture

What is a Virtual Machine?
• A software implementation of a machine architecture

• Software needs hardware to run, so hardware is implied
too

• Two machine architectures are involved: guest and host

• The guest may be defined only by software or be an
emulation of a real machine (i.e., also available as a
hardware implementation)

• The host is usually hardware, but need not be (e.g., a
language VM written in Java running on the JVM)

A typical VM

VM software

virtualized application

hardware

VM ISA

hardware ISA

Process and System VMs

Process and System VMs
• A Process VM implements an ABI (Application

Binary Interface: the combination of a user-level
ISA and an OS system call interface)

Process and System VMs
• A Process VM implements an ABI (Application

Binary Interface: the combination of a user-level
ISA and an OS system call interface)

• A System VM implements both the hardware
user and system ISA (i.e., including privileged
instructions)

Process and System VMs
• A Process VM implements an ABI (Application

Binary Interface: the combination of a user-level
ISA and an OS system call interface)

• A System VM implements both the hardware
user and system ISA (i.e., including privileged
instructions)

Will not consider these further here — see the full
course for more info.

Language VMs

• A language-specific process VM

• The VM presents an OS-like interface to
applications in the chosen language, as well as an
ISA designed specifically for the semantics of the
chosen language.

2. Interpretation
(and compilation)

What is an interpreter?

An interpreter for a source language L is a
mechanism for the direct execution of all programs
from L, which executes each element of the source
program in turn without reference to other elements

Some consequences
• Performance is typically uniform and predictable

(e.g., every execution of the same node is the
same and has the same performance, modulo
micro-architectural effects in the host machine
[caching, branch prediction, etc.])

• Typically slow, as there is much overhead in
deciding how to interpret a specific language
element, and no scope for optimization across time
or program space

In contrast: compilation

• A compiler transforms a program in a source
language S to an equivalent program in a target
language T (S≠T).

• It does not execute the source program at all (cf.
interpretation)

Interpretation is usually preceded
by some kind of compilation

• It is rare that the source program of any non-trivial language is
executed directly by an interpreter; usually it is transformed by a
parser or compiler into some intermediate representation (IR)

• The IR removes lexical noise such as comments, white space and
other formatting

• Don’t want to penalize commentary and formatting by increasing
execution time

• Lexemes are either condensed into “atoms” (identifiers, constants)
or abstracted/combined into operations (keywords, operators)

• Elements are reordered into execution order (e.g., operators in an
expression)

The interpreter illusion
• One common goal of an advanced VM implementation

is to preserve the illusion of interpretation while
maximizing performance (e.g., by compiling on-the-fly).

• Can be challenging! For example, compilers commonly
reorder actions.

• The trick is to carefully define/discover what is
observable, and what is not

• Or: “cheat, but don’t get caught”

AST interpreters for  
high-level languages

• AST = Abstract Syntax Tree

• The tree produced by a parser of a high-level
language compiler 
 
do { 
 i++;  
} while (i < n);

do-while

++ int<

i ni

Example: interpreting a
simple expression language

• Language elements: variables holding an integer;
integer constants; expressions involving simple
arithmetic; assignments

3+4 
b=2*a+1 
x*x+x+5

example input

=

b +

a

1

2

*

b=2*a+1

Implementation using
objects

• ASTs and interpreters are a natural fit for object-
oriented programming.

• Each kind of node is a class

• Use inheritance for better factoring

• Use method dispatch for evaluation

class ASTNode {  
 …stuff common to all nodes…}

abstract class ExprNode extends ASTNode
{  
 abstract int eval();  
}

In Java…

// all trivial constructors elided

class ConstNode extends ExprNode {  
 final int val;  
 
 int eval() { return val; }  
 …  
}

class AddNode extends ExprNode {  
 ExprNode left, right;  
 int eval() {  
 return left.eval()+right.eval(); }  
 …  
}  

Other operator nodes look almost identical.

class VarNode extends ExprNode {  
 int val;  
 void set(int val) { this.val = val; }  
 int eval() { return this.val; }  
 …  
}

class AssignNode extends ExprNode {  
 VarNode var;  
 ExprNode rhs;  
 int eval() {  
 int rhsVal=rhs.eval();  
 var.set(rhsVal);  
 return rhsVal; }  
 …  
}

Adding statements
abstract class StmtNode extends ASTNode { 
 abstract void eval();  
}  
 
class SimpleStmtNode extends StmtNode {  
 ExprNode e;  
 void eval() { int ignored = e.eval(); } 
}  
 
class SeqNode extends StmtNode {  
 ArrayList<StmtNode> seq;  
 void eval() {  
 for (StmtNode s : seq) { s.eval(); }  
 }  
}

Control flow is easy…
sometimes

…when the semantics are local and equivalent in the
implementation language. Example: consider
interpreting a do-while expression.  
 
class DoWhileNode extends StmtNode {  
 StmtNode body; ExprNode cond;  
 void eval() {  
 do body.eval() while (cond.eval() != 0); 
 }  
}  

But sometimes not so
easy…

• Example: break from within a loop

• Why doesn’t this work? 
 
class BreakNode extends StatementNode
{  
 void eval() { break; }  
}

Solutions to control flow
problems

• Add a break-out path for each possible enclosing
node type

• Messy when you need to return a value and a
break-out indication if the implementation
language can’t return a pair

• Use host language exceptions

Break, using exceptions

StmtNode: abstract void eval() throws
BreakException  
 
class BreakNode … {  
 void eval() throws BreakException {  
 throw new BreakException();  
 }  
}

Break, using exceptions
class DoWhileNode … {  
 StmtNode body;  
 ExprNode cond;  
 
 void eval() throws BreakException {  
 try {  
 do {  
 body.eval();  
 } while (cond.eval() != 0);  
 catch (BreakException b) {};  
 }

Interpreter performance
considerations

Let’s look at what it takes to
interpret b=2*a+1  
 
eval(〖b=2*a+1〗)  
 eval(〖2*a+1〗) 
 eval(〖2*a〗) 
 eval(〖2〗) ⇾ i 
 eval(〖a〗) ⇾ j 
 i * j ⇾ k 
 eval(〖1〗) ⇾ l 
 k + l ⇾ m 
 assign m to 〖b〗

• Every eval() is a virtual call
and return

• How predictable is the flow?

• Max stack depth is 4 frames

• How many loads just to walk
the tree?

AST interpretation:
conclusions

• Slow (typically 100—1000x slower than best possible)

• ASTs are big

• But, easy to write and reason about; portable

• Source code as the distribution medium (cf. compilation) — lots of pros and
cons (some of which are non-technical)

• See [Franz ’94] for another variation on the theme

• Tightly coupled to the source language

• Languages change faster than instruction sets…which leads us to: bytecodes.

• We’ll revisit AST interpretation near the end, to see how it can be made fast.

3. Language VMs
Part 1, 1966—circa 2000

What is a Language VM?
• A language-specific Process VM

• The VM presents an OS-like interface to applications as
well as an ISA

• Often created together with, or during the evolution, of the
associated language.

• Typically embodies language-specific concepts and
semantics.

• A relatively small jump from language semantics to VM
interface.

Timeline
• BCPL

• Pascal

• Smalltalk

• Self

• Java

• JavaScript

• Truffle/Graal

1966

1972–1977

1976–1984

1987–1994

1997—

2008— 
 
2014—

BCPL
• Basic CPL (Combined Programming Language)

• CPL was a broad-spectrum language conceived by Christopher
Strachey at Cambridge and others in the early 1960s.

• Martin Richards* (Cambridge) designed the BCPL subset [Basic
CPL] in 1966 (which was implemented in 1967)

• Used for systems programming (compilers, operating systems)

• BCPL was a major influence on the design of C

• The compiler emitted OCODE, which could be translated to native
machine code; Cintcode was a bytecode for interpretation

* Of Richards benchmark fame

Interpretation technique #2:
Bytecode interpretation

• Idea: Real machines (ie hardware) don’t have the issues of
AST interpretation; let’s mimic a real machine

• Design an instruction set architecture for the language being
interpreted, and write an interpreter for that ISA

• Real machines expose many details which are irrelevant to the
guest language (e.g., the address of a variable on the stack)

• Omit these details from the ISA spec., usually by
abstraction

• Example: use a stack, instead of registers

Example
• Spec. of expression language machine, using a

stack of ints:

push n … Push an integer constant on the stack

push v … Push the value of variable v on the stack

op … (op=add|sub|mul|div) Pop the top two ints, apply 
 op, push the result

pop v… Pop the stack into variable v

Example: control flow
• Index the bytecodes in the program

• Add conditional and unconditional branch
instructions

jump n … Jump to bytecode at offset n

jeq n … Pop a value from the stack and jump to n if it
is equal to zero

Ditto jne, jlt, jle, …

Bytecode interpreter
pc = address_of_first_instruction();  
forever do:  
 b = fetch_bytecode(pc);  
 switch (opcode(b))  
 case push: push(get_value(field(b));  
 case pop: store(pop(), field(b));  
 case add: push(pop() + pop());  
 … 
 case jump: pc = pc + field(b); 
 …

Performance
• A bytecode interpreter is typically a little faster than

an equivalent AST interpreter — but not by much.

• It spends most of its time figuring out what to do,
and only a little doing it.

• It’s an easy way to make your language
implementation portable.

• Modest optimizations can be done in the compiler
from language to bytecode.

Pascal p-code
• Origins in a Pascal compiler developed in the

mid-1970s at ETH Zurich

• Used in the UCSD p-System (OS) released in 1978,
deployed widely for commercial use

• Stack machine, very simple, originally interpreted

• Later: Hardware implementations: Western Digital’s
Pascal MicroEngine, NCR, later Lilith (Modula-2 M-
code)

Smalltalk

From the mid-1970s to the mid-1980s, Smalltalk took
up the running in VM technology.

It’s 1969…

• Alan Kay’s Ph.D. thesis, The Reactive Engine,
describes a future of personal, portable computers
and speculates on how they will be programmed
and used.

Early 1970s
• In 1970, Kay joins Xerox PARC (just

created), forms the Learning
Research Group, attracts other
researchers, including Adele
Goldberg.

• The Smalltalk language and system
are invented and developed
through several versions. The aim is
to build a system capable of being
used by children to learn.

Smalltalk-76 and the Alto
• PARC develops the Alto

workstation — the “interim
Dynabook” — a personal
computer with high-resolution
bitmapped graphics, local
storage and a fast network
connection.

• Smalltalk-76 is honed
for the Alto. BitBlt,
copy and paste are
invented.

1981–3: Smalltalk-80 is
released to the world

• BYTE special issue
(Aug 1981)

1981–3: Smalltalk-80 is
released to the world

• The “colored books” (1983)

Smalltalk-80 Virtual Machine

• Defined by a reference implementation (in
Smalltalk!) in the Blue Book

• Bytecode ISA, object memory

• Classes, metaclasses, method activations are
objects!

1981–3: Smalltalk-80 is
released to the world

• The tape (1983)

• All the objects

• Roll your own VM!

• Slow! (see Green Book)

PS
• Efficient Implementation of the Smalltalk-80 System,  

L Peter Deutsch and Allan M Schiffman, POPL
1984

The paper: contributions
• Just-In-Time (JIT) translation of Smalltalk bytecode

to machine code; code caching and lookup

• Inline caching of message send targets

• On-demand conversion of contexts (activation records)
from on-stack to hybrid and heap-allocated forms

• Deferred reference counting (described in a 1976
paper by Deutsch & Bobrow)

• For more detail, watch CS294 session on youtube.

A JIT compiler eliminates
interpreter dispatch overhead

• Simple elimination of interpreter overhead leads to
a significant speedup. This is because we perform
bytecode decoding only once, and the generated
code does not have the overhead of the interpreter
loop (or other dispatch for more advanced forms of
interpretation).

Self
1987–1995

• Language designed in 1987 as a successor to
Smalltalk; even simpler and more regular

• Objects, slots, methods, messages

• VM had only 8 bytecodes!

• Stanford & PARC 1987—1992  
Sun Labs 1992—1995

Self implementation
innovations

From JIT to adaptive, feedback-driven optimization (to
come after JIT compilation):

• Optimizing compilation of a dynamic language

• Type feedback

• Adaptive optimization

• PICs, maps, generational heap

• C++ implementation tricks

Challenges of dynamic
languages

• Types are unknown ahead of time

• Types within an expression may vary over time

• Intermingling of structured and primitive values

• Varying code

• Programmer changes

• Self-modifying code

Self 3.0 
(released 1993)

• Feedback-driven adaptive optimization (Urs
Hölzle’s thesis, 1994):

• Polymorphic Inline Caches (PICs) and counters

• Adaptive inlining

• Deoptimization

Inlining
• Inlining is an important optimization, not just

because it removes call overhead, but because it
increases the size of the compilation unit, and
exposes more code to optimization.

• Improperly applied, it can lead to code bloat. Prior
to its application in dynamic compilers, automatic
inlining was of marginal use, because it could not
be applied wisely.

What inlining enables
• Connects data flows across methods

• Connect control flows across methods

• Turns exceptions and other non-local control into
jumps

• Combined data- and control-flow analysis can, e.g.,
eliminate closures entirely.

• Opens the door to further optimizations (including
more inlining)

Self 3 architecture
• JIT-compile code on first execution

• Instrument the emitted code to measure execution
frequencies, and observe types in use and actual
call edges

• Recompile hotspots, using gathered info to drive
inlining and other optimizations

• Result: rapid execution with acceptable warm-up

Dynamic deoptimization
• Many potential optimizations are speculative: they

are based on the current state of the program and/
or data, which may change.

• Example: Java class loading can invalidate
inlining decisions

• If this occurs, we need a technique to recover the
state of the computation, abandon the incorrect
optimizations, and proceed with the correct
behavior.

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

baz(p, q) { return p+q; }

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

baz(p, q) { return p+q; }

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

baz(p, q) { return p+q; }

m’(m) foo baz

inlining tree

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }

m’(m) foo baz

inlining tree

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }

frame for bar

m’(m) foo baz

inlining tree

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }

frame for bar

m’(m) foo baz

inlining tree

frame for …

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }baz(p, q) { return p*q; }

frame for bar

m’(m) foo baz

inlining tree

frame for …

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }baz(p, q) { return p*q; }

frame for barframe for foo:  
in call to bar()

frame for m:  
in call to foo() 

x = 3 
y = 4

m’(m) foo baz

inlining tree

frame for …

Dynamic deoptimization
m() {x := 3; y := 4; foo(x, y);}

foo(i, j) { bar(); return baz(i, j); }

m’() {bar(); return 7;}

frame for m’: 
in call to bar()

baz(p, q) { return p+q; }baz(p, q) { return p*q; }

frame for barframe for foo:  
in call to bar()

frame for m:  
in call to foo() 

x = 3 
y = 4

m’(m) foo baz

inlining tree

frame for …frame for bar: 
return to foo()

On-stack replacement
Suppose we have a long-running loop. When we first
execute the loop, all the methods are unoptimized.
Part way through, we trigger a counter and invoke
optimizing compilation of the loop and its callees.
How do we transition to the optimized code before
waiting for the loop to end?

Solution: use the same frame-replacement
techniques, except this time replacing unoptimizing
frames with their optimized counterparts.

Java  
1995—present

VMs enter the mainstream

The Java Virtual Machine

• Java emerged shortly after the World Wide Web
was invented; when dissatisfaction with C and
especially C++ as an application language was
high; and when OOP was hugely popular.

• Portable binaries + type-safe + objects

The JVM
• The JVM was based on familiar ideas: a machine-

independent bytecode ISA; automatic memory
management (GC); objects and methods.

• It added a class-level distribution format, sandbox
security (applets), static typing and bytecode/class
verification.

• Massive adoption made bytecode VMs and those
implementation techniques ubiquitous.

JVM developments  
1995–2000

• Early JVMs (1995-1998) were just playing catch-up
with Smalltalk and Self.

• Many simple JIT compilers were written

• Java’s built-in concurrency added new
challenges and opportunities

HotSpot
• The “Java HotSpot Virtual Machine” (1999), incorporated many of

the techniques from Self…unsurprising, as developed by an ex-
Selfer, following a pivot from Smalltalk:

• Inlining, PICs, counters, deopt

• Added new techniques for Java’s peculiarities, and careful
engineering to take advantage of static types:

• Fast locking, virtual table dispatch, …

• A subsequent release incorporated the Server Compiler (C2), which
brought SSA-based heavy-duty code optimization techniques,
taking performance well beyond that of Self-era compilers (such as
the first HotSpot compiler, and the Client Compiler (C1)).

Later innovations used in
JVM implementations

• Escape analysis

• Biased locking

• Thread-local allocation buffers

• Separable compiler(s)

• Concurrent GC

• Lots of techniques

4. Language VMs
Part 2, 2000–2010

Proliferation
• By the mid-2000s, language VM technology had

been widely deployed (on perhaps a billion
devices, from cellphones to supercomputers)

• The bulk of the implementation effort had gone into
JVMs (Sun, IBM) and the CLR (Microsoft).

• In contrast, the performance of other managed
languages (JavaScript, Python, Perl, etc.) was
lackluster.

JavaScript Wars
• Language was invented by Eich at Netscape in 1995

• By mid-2000s, it was still the only viable language of the web, but was
interpreted.

• OK for web-page one-liners, not for web applications. AJAX made
sophisticated applications possible.

• In the late 2000s, several companies invested heavily to develop high-
performance JavaScript VMs:

• Mozilla: TraceMonkey — trace compilation comes to language VMs

• Google: V8 — very similar to Self (maps) and HotSpot

• Apple: WebKit/SquirrelFish (later Nitro)

Trace compilation
• In a binary translator, traces are a more obvious choice

for translation unit. In a language VM, the linguistic
constructs are available — so why use traces?

• Linear traces are easy to compile quickly

• Inlining comes for “free” — traces span call
boundaries

• Well-described by Gal et al., HotPathVM, 2006 (a JVM)

• Used in Mozilla’s TraceMonkey, c.2008

Some disadvantages of writing a VM
in C/C++

• Lack of safety — occasionally essential

• Two runtimes with differing views of the world:
managed and unmanaged

• Result: building a high-performance VM in C/C++
requires extraordinary skill and great effort.

Writing a VM in a high(er)-
level language

• These issues have led to attempts to write VMs in
other languages, to decrease the skill and effort
level required. Desiderata:

• Higher-level (e.g., type- and memory-safe);

• Better low-level control when needed (to avoid
assembly)

• Uniform and preferably automatic handling of
references, safe points, calling conventions, etc.

Metacircularity — with
performance

Some systems generated C from a higher-level
language (e.g., Squeak, which used Smalltalk). That
only address part of the problem.

To get performance together with the benefits of a
higher-level language, we can adopt an architecture
in which a single compiler can serve to build the VM
and also to compile applications.

Metacircularity — with
performance

preexisting VM

compiler source

bytecode compiler 
(e.g., javac)

Metacircularity — with
performance

compiler bytecodepreexisting VM

compiler source

bytecode compiler 
(e.g., javac)

Metacircularity — with
performance

compiler bytecode

preexisting VM

compiler source

Metacircularity — with
performance

VM source

compiler bytecode

preexisting VM

compiler source

Metacircularity — with
performance

VM source

VM binary
(incl. compiler)

compiler bytecode

preexisting VM

compiler source

Metacircularity — with
performance

VM source

VM binary
(incl. compiler)

compiler bytecode

preexisting VM

compiler source
application
bytecode

Metacircularity — with
performance

VM source

VM binary
(incl. compiler)

compiler bytecode

preexisting VM

compiler source

application
bytecode

application n-code

Advantages

The same compiler is being used for the VM as for
the application

• Common calling convention

• Can inline VM code into application

• Common handling of safe points, references

5. Multilingual VM
Frameworks 

2010—present

Relative speeds of various languages

3

1

10

100

1000

mean

Slowdown

(smaller is

better)

From the Computer Language Benchmarks Game, ~2013

Can we build a language-
independent VM framework in
which many languages can be

implemented (more) easily?

What is needed to generate
code for a user program?

1. The user program

2. Expressed semantics of each language element

Combine the semantics of each element of the user
program and generate code for the combined result.

This is what a traditional compiler does. But are there
alternatives?

Compilation without a guest language compiler:
1. Metatracing

• Express the language semantics as a bytecode
interpreter in a relatively high-level language

• Modify the interpreter to gather bytecode execution
traces from the guest program

• Combine the traces with the interpreter’s actions to
generate code for each trace; like unrolling the
interpreter.

• Together with some hints and optimizations, can
generate pretty good code.

PyPy
• Originally, a Python VM written in a subset of Python,

RPython (Restricted — types can be inferred, and it is
easily translated). Generated C code or LLVM IR.

• Subsequently, a framework for the implementation of
multiple languages via meta-tracing.

• Tracing the meta-level: PyPy's tracing JIT compiler,
Bolz et al., 2009.

• Good performance for a variety of languages: Python,
Ruby, Prolog, PHP, …

Compilation without a guest language compiler:
2. Partial evaluation of ASTs

• Express the language semantics as an AST
interpreter in a relatively high-level language

• Combine the guest application’s ASTs with the
interpreter semantics; generate code

Example

Consider a simple expression AST interpreter:

How can we compile code for an expression such as
b=2*a+1?

class ASTNode { …stuff common to all nodes…}

abstract class ExprNode extends ASTNode { 
 abstract int eval(); 
}

class ConstNode extends ExprNode { int val; int eval() { return val; } … }

class AddNode extends ExprNode { 
 ExprNode left, right; 
 int eval() { return left.eval()+right.eval(); … }  
…}

class VarNode extends ExprNode { 
 int val;  
 void set(int v) { val=v; } 
 int eval() { return val; } … 
…}

class AssignNode extends ExprNode { 
 VarNode var; ExprNode rhs; 
 int eval() { int rhsVal=rhs.eval(); var.set(rhsVal); return rhsVal; }  
…}

ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); }
VarNode>eval() { return val; } 
AssignNode>eval() { return var.set(rhsVal.eval()); }  

Compiling a simple
expression

b=2*a+1

ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); } 
MulNode>eval() { return left.eval()*right.eval(); } 
VarNode>eval() { return val; }  
AssignNode>eval() { return var.set(rhsVal.eval()); }

=

b +

a

1

2

*

Compiling a simple
expression

b=2*a+1

ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); } 
MulNode>eval() { return left.eval()*right.eval(); } 
VarNode>eval() { return val; }  
AssignNode>eval() { return var.set(rhsVal.eval()); }

b.var.set()

=

b +

a

1

2

*

Compiling a simple
expression

b=2*a+1

ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); } 
MulNode>eval() { return left.eval()*right.eval(); } 
VarNode>eval() { return val; }  
AssignNode>eval() { return var.set(rhsVal.eval()); }

b.var.set()()+()

=

b +

a

1

2

*

Compiling a simple
expression

b=2*a+1

ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); } 
MulNode>eval() { return left.eval()*right.eval(); } 
VarNode>eval() { return val; }  
AssignNode>eval() { return var.set(rhsVal.eval()); }

b.var.set()

=

b +

a

1

2

*

()*()+()

Compiling a simple
expression

b=2*a+1

ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); } 
MulNode>eval() { return left.eval()*right.eval(); } 
VarNode>eval() { return val; }  
AssignNode>eval() { return var.set(rhsVal.eval()); }

b.var.set()

=

b +

a

1

2

*

2 *()+()

Compiling a simple
expression

b=2*a+1

ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); } 
MulNode>eval() { return left.eval()*right.eval(); } 
VarNode>eval() { return val; }  
AssignNode>eval() { return var.set(rhsVal.eval()); }

b.var.set()

=

b +

a

1

2

*

2 * a.val +()

Compiling a simple
expression

b=2*a+1

ConstNode>eval() { return val; }  
AddNode>eval() { return left.eval()+right.eval(); } 
MulNode>eval() { return left.eval()*right.eval(); } 
VarNode>eval() { return val; }  
AssignNode>eval() { return var.set(rhsVal.eval()); }

b.var.set()

=

b +

a

1

2

*

2 * a.val + 1

Partially evaluation of the
interpreter is compilation

• So one way to achieve language-independent
compilation is to write a language interpreter and a
partial evaluator for the language in which the
interpreter is written

• To compile a different language, we just need a
new interpreter, but not a new partial evaluator.

• Partial evaluation blends interpretation and
compilation.

Partial evaluation alone is
not enough

• Partial evaluation in this way has been known about
for a long time [Futamura 71], but it hasn’t helped
in implementing dynamic languages efficiently.
Why?

• The problem is the lack of type and other
behavioral information, which only becomes
manifest at run time.

What is needed to generate
good code for a user program?

• Express semantics of each language element

• Express what the user program is doing/likely to do
in concrete terms (hotspots, types)

• Combine the semantics of each element of the user
program with the usage information and generate
code for the expected behavior.

What is needed to generate
good code for a user program?

• Express semantics of each language element

• Express what the user program is doing/likely to do
in concrete terms (hotspots, types)

• Combine the semantics of each element of the user
program with the usage information and generate
code for the expected behavior.

✓AST interpreter provides this directly

What is needed to generate
good code for a user program?

• Express semantics of each language element

• Express what the user program is doing/likely to do
in concrete terms (hotspots, types)

• Combine the semantics of each element of the user
program with the usage information and generate
code for the expected behavior.

✓AST interpreter provides this directly

✓Profile and specialize within the AST

What is needed to generate
good code for a user program?

• Express semantics of each language element

• Express what the user program is doing/likely to do
in concrete terms (hotspots, types)

• Combine the semantics of each element of the user
program with the usage information and generate
code for the expected behavior.

✓AST interpreter provides this directly

✓Profile and specialize within the AST

✓Use the interpreter and the profiles to generate
specialized code. Deopt when wrong.

Specializing ASTs during
interpretation

• One solution is to gather profile data during AST
interpretation.

• But to get faster interpretation and profiling data,
we can specialize the AST nodes at run-time based
on each node’s observed behavior.

Example: addition
Object add(Object a, Object b) {
 if (a instanceof Integer && b instanceof Integer) {
 return (int) a + (int) b;
 } else if (a instanceof String  
 && b instanceof String) {
 return (String) a + (String) b;
 } else {
 return genericAdd(a, b);
 }
}

Example: addition
Object add(Object a, Object b) {
 if (a instanceof Integer && b instanceof Integer) {
 return (int) a + (int) b;
 } else if (a instanceof String  
 && b instanceof String) {
 return (String) a + (String) b;
 } else {
 return genericAdd(a, b);
 }
}

int add(int a,
 int b) {
 return a + b;
}

Example: addition
Object add(Object a, Object b) {
 if (a instanceof Integer && b instanceof Integer) {
 return (int) a + (int) b;
 } else if (a instanceof String  
 && b instanceof String) {
 return (String) a + (String) b;
 } else {
 return genericAdd(a, b);
 }
}

int add(int a,
 int b) {
 return a + b;
}

String add(String a,
 String b) {
 return a + b;
}

Example: addition
Object add(Object a, Object b) {
 if (a instanceof Integer && b instanceof Integer) {
 return (int) a + (int) b;
 } else if (a instanceof String  
 && b instanceof String) {
 return (String) a + (String) b;
 } else {
 return genericAdd(a, b);
 }
}

Object add(Object a,
 Object b) {
 return genericAdd(a, b);
}

int add(int a,
 int b) {
 return a + b;
}

String add(String a,
 String b) {
 return a + b;
}

Type transitions

Uninitialized

Stringint

generic

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

eval

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

eval

eval

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

eval

Integer(2)

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

eval

eval

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

eval

Integer(3)

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

eval

*

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

*

Integer(6)

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

*

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

*

eval

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

*

Integer(1)

Evolution of an expression
1. Specialization

+

a(=3)

1

2

*

eval

*

+

Evolution of an expression
1. Specialization

+

a(=3)

1

2

**

+

Integer(6)

Evolution of an expression
2. Repeated execution

a(=3)

1

2

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

evalInt

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

evalInt

evalInt

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

evalInt

int(2)

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

evalInt

evalInt

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

evalInt

int(3)

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

evalInt

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

*

int(6)

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

*

+

evalInt

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

*

int(1)

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

eval

*

+

Evolution of an expression
2. Repeated execution

a(=3)

1

2

*

+

Integer(6)

Evolution of an expression
3. Mismatch

a(=3)

1

2

*

+

Evolution of an expression
3. Mismatch

a(=3)

1

2

*

+

a=‘x’

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

*

+

a=‘x’

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

evalInt

*

+

a=‘x’

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

evalInt

evalInt

*

+

a=‘x’

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

evalInt

int(2)

*

+

a=‘x’

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

evalInt

evalInt

*

+

a=‘x’

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

evalInt

UnexpectedResult(‘x’)

*

+

a=‘x’

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

evalInt

*

+

a=‘x’

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

evalInt

*

+

a=‘x’

*

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

*

UnexpectedResult(‘xx’)

+

a=‘x’

*

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

*

+

a=‘x’

*

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

*

+

a=‘x’

*

+

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

*

+

eval

a=‘x’

*

+

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

*

Integer(1)

+

a=‘x’

*

+

Evolution of an expression
3. Mismatch

a(=3)

1

2

eval

*

+

a=‘x’

*

+

Evolution of an expression
3. Mismatch

a(=3)

1

2

*

+

‘xx1’

a=‘x’

*

+

In pseudo-code
(this is not what you actually write)

In pseudo-code
(this is not what you actually write)

abstract class Node { 
 Node parent; // every node in the AST has a single parent, so that it can replace itself  
…}

In pseudo-code
(this is not what you actually write)

abstract class Node { 
 Node parent; // every node in the AST has a single parent, so that it can replace itself  
…}

abstract class BinaryNode extends ExprNode { 
 ExprNode leftChild, rightChild; 
…}

In pseudo-code
(this is not what you actually write)

abstract class Node { 
 Node parent; // every node in the AST has a single parent, so that it can replace itself  
…}

abstract class BinaryNode extends ExprNode { 
 ExprNode leftChild, rightChild; 
…}

abstract class AddNode extends BinaryNode { 
 Object eval();  
 int evalInt() throws UnexpectedResult;  
 String evalString() throws UnexpectedResult;  
…}

In pseudo-code
(this is not what you actually write)

abstract class Node { 
 Node parent; // every node in the AST has a single parent, so that it can replace itself  
…}

abstract class BinaryNode extends ExprNode { 
 ExprNode leftChild, rightChild; 
…}

abstract class AddNode extends BinaryNode { 
 Object eval();  
 int evalInt() throws UnexpectedResult;  
 String evalString() throws UnexpectedResult;  
…}

class UninitializedAddNode extends AddNode {  
 Object eval(); // evaluate and replace with the appropriate specializer

In pseudo-code
(this is not what you actually write)

abstract class Node { 
 Node parent; // every node in the AST has a single parent, so that it can replace itself  
…}

abstract class BinaryNode extends ExprNode { 
 ExprNode leftChild, rightChild; 
…}

abstract class AddNode extends BinaryNode { 
 Object eval();  
 int evalInt() throws UnexpectedResult;  
 String evalString() throws UnexpectedResult;  
…}

class UninitializedAddNode extends AddNode {  
 Object eval(); // evaluate and replace with the appropriate specializer

class IntAddNode extends AddNode { 
 int evalInt() throws UnexpectedResult; // assumes ints, replace with Generic otherwise

In pseudo-code
(this is not what you actually write)

abstract class Node { 
 Node parent; // every node in the AST has a single parent, so that it can replace itself  
…}

abstract class BinaryNode extends ExprNode { 
 ExprNode leftChild, rightChild; 
…}

abstract class AddNode extends BinaryNode { 
 Object eval();  
 int evalInt() throws UnexpectedResult;  
 String evalString() throws UnexpectedResult;  
…}

class UninitializedAddNode extends AddNode {  
 Object eval(); // evaluate and replace with the appropriate specializer

class IntAddNode extends AddNode { 
 int evalInt() throws UnexpectedResult; // assumes ints, replace with Generic otherwise

class StringConcatNode extends AddNode { 
 String evalString() throws UnexpectedResult; // assumes Strings, replace with Generic otherwise

In pseudo-code
(this is not what you actually write)

abstract class Node { 
 Node parent; // every node in the AST has a single parent, so that it can replace itself  
…}

abstract class BinaryNode extends ExprNode { 
 ExprNode leftChild, rightChild; 
…}

abstract class AddNode extends BinaryNode { 
 Object eval();  
 int evalInt() throws UnexpectedResult;  
 String evalString() throws UnexpectedResult;  
…}

class UninitializedAddNode extends AddNode {  
 Object eval(); // evaluate and replace with the appropriate specializer

class IntAddNode extends AddNode { 
 int evalInt() throws UnexpectedResult; // assumes ints, replace with Generic otherwise

class StringConcatNode extends AddNode { 
 String evalString() throws UnexpectedResult; // assumes Strings, replace with Generic otherwise

class GenericPlusNode extends AddNode { 
 Object eval(); // implement user-defined +

Node replacement

+

a(=3)

1

2

*

Node replacement

+

a(=3)

1

2

**

Node replacement

+

a(=3)

1

2

**

More pseudo-code
class UninitializedAddNode extends AddNode { 
 Object eval() {  
 Object a = leftChild.eval();  
 Object b = rightChild.eval();  
 if (a instanceof Integer && b instanceof Integer) 
 return this.replaceWithIntAddNode(a, b); 
 else if (a instanceof String && b instanceof String) 
 return this.replaceWithStringConcatNode(a, b); 
 else  
 return this.replaceWithGenericPlusNode(a, b); 
 }  
 …  
}

More pseudo-code
class IntAddNode extends AddNode {  
 int evalInt() throws UnexpectedResult { 
 int a;  
 try {  
 a = leftChild.evalInt();  
 } catch {UnexpectedResult ex) {  
 throw rewrite(ex.result, rightChild.eval()); 
 }  
 int b;  
 try {  
 b = rightChild.evalInt();  
 } catch {UnexpectedResult ex) {  
 throw rewrite(a, ex.result);  
 }  
 return a+b;  
 }  
…

Compiling the specialized
ASTs

• ASTs are also decorated with counters to do self-
profiling

• When a hot AST node is found, the compiler is
invoked

• It walks the AST, and uses the specialization and
profile information to guide inlining.

• Unexpected types result in deoptimization

Compiling the specialized
AST

x

1

2

*

+

class IntAddNode extends AddNode { 
 int evalInt() throws UnexpectedResult { 
 int a; 
 try { 
 a = leftChild.evalInt();  
 } catch {UnexpectedResult ex) { 
 throw rewrite(ex.result, rightChild.eval()); 
 } 
 int b; 
 try { 
 b = rightChild.evalInt(); 
 } catch {UnexpectedResult ex) { 
 throw rewrite(a, ex.result); 
 } 
 return a+b; 
 } 
…

Compiling the specialized
AST

x

1

2

*

+

class IntAddNode extends AddNode { 
 int evalInt() throws UnexpectedResult { 
 int a; 
 try { 
 a = leftChild.evalInt();  
 } catch {UnexpectedResult ex) { 
 throw rewrite(ex.result, rightChild.eval()); 
 } 
 int b; 
 try { 
 b = rightChild.evalInt();  
 } catch {UnexpectedResult ex) { 
 throw rewrite(a, ex.result); 
 } 
 return a+b; 
 } 
…

Compiling the specialized
AST

x

1

2

*

+

class IntAddNode extends AddNode {  
 int evalInt() throws UnexpectedResult { 
 int a; 
 try { 
 a = {  
 a = 2; 
 b = var[‘x’] 
 return a*b 
 } 
 b = 1  
 
 
 } 
 return a+b; 
 } 
…

Implementation language
desiderata

Implementation language
desiderata

• Must handle machine types

Implementation language
desiderata

• Must handle machine types

• Exception paths for unexpected types

Implementation language
desiderata

• Must handle machine types

• Exception paths for unexpected types

• Efficient code generation

Implementation language
desiderata

• Must handle machine types

• Exception paths for unexpected types

• Efficient code generation

• Code processing/generation to handle boiler-plate

Implementation language
desiderata

• Must handle machine types

• Exception paths for unexpected types

• Efficient code generation

• Code processing/generation to handle boiler-plate

Java with compiler directives, annotations and an
annotation processor ⇒ the Truffle DSL

5. Wrap-up

The Future

• Multi-lingual support is coming here

• Further proliferation as VMs get easier to build

• New languages? New DSLs?

Acknowledgments

• Thanks to the following for comments on drafts and
discussions:  
Laurie Tratt, Carl Friedrich Bolz, Peter Kessler,
Michael Van De Vanter, Adam Welc, Laurent
Daynès, Christian Wimmer.

