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About me

1999-2003 MEng. University of Bristol

2003-2007 PhD. University of Manchester
“A chip multi-cluster architecture with locality based work distribution”

2007-2008 Post-doc
“Object-Based Transactional Memory”

2008-2010 Azuro (now part of Cadence)
Clock Tree Synthesis and Clock Concurrent Optimization

2010- Arm Research
Armv8 Crypto Extensions, Scalable Vector Extensions, 
Statistical Profiling Extensions
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Arm Research

Mission
• Partner to accelerate innovation and transfer research 

knowledge across Arm and the Arm Ecosystem

Objectives
• Build a pipeline to create and bring future technology 

into the Arm Ecosystem

• Create and maintain the emerging technology landscape

• Enable innovative research through collaboration and 

partnership 

Strategic Research 

Agendas

Technology 

Landscapes

Research 

Programs

Collaboration 

Programs

150+ researchers worldwide (~4% of Arm)

Cambridge UK, Austin TX, San Jose CA,

Boston MA, Seattle WA
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Research Group Charter
Our research focus is defined by these significant challenges

• Demand for increased performance and 
functionality continue in spite of limited 
future process scaling

• High growth of connected devices will not be 
possible without intelligent approaches to 
scaling connected compute 

• Machine learning workloads must migrate to 
constrained devices at the edge

• Growth of diverse connected systems pose 
significant security challenges

Achieve more with 
constrained budgets

Proliferate access to 
high performance and 
efficient ML compute

Scale connected 
compute intelligently

Systematically remove 
excuses for 

untrustworthiness

Focus Areas   
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Archeology
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Transistors aren’t scaling the way they used to…

ITRS previously predicted shrinkage until at least 2028, but latest report 
shows feature size going flat. ITRS chair: “Some further scaling may be 
possible after transistors go vertical”.

source: spectrum.ieee.org/semiconductors/devices/transistors-could-stop-shrinking-in-2021
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Unless your design run is sufficiently large, the cost per transistor 
stopped scaling at 28nm: certainly no longer following 

source: G. Yeric, IEDM 2015 Keynote
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... general purpose performance is stalling ...

MultiAmdahl: Optimal Resource Allocation in Heterogeneous Architectures 
Yavits et. al – IEEE Comp. Arch. Letters. 13 (1) pg. 37-40.

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer 
Architecture: A Quantitative Approach, 6/e. 2018 
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1.7bn

2.1bn PC, Tablet

7.1bn 13.5bn Mobile

4.6bn
15.7bn

275bn 

IoT

2015 2025 2035

... in a new connected device era

Connected Device Forecast Sensors will populate the world of the IoE

Source: softbank, based on data by Ericsson

Bandwidth source: cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/mobile-white-paper-c11-520862.html

Over 1 trillion IoT devices 
(accumulated in 2016-2035)

Source: itrs

1TB/s 145TB/s

3.3PB/s
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Adapted and extended from “Advancing Computer Systems without Technology Process”
Christos Kozyrakis, Keynote, ISPASS 2013.
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Two challenges moving forward
I think this is an excellent time to be studying Computer Architecture – two grand 
challenges and plenty of competing ideas for solving them...

The data explosion is made up of our data

• our movements, payments, photos, connections, details, thoughts...

• data is worth money, which makes it worth stealing...

• Protecting data and privacy is paramount

Processing this data requires immense compute

• if all Google’s customers used 3 minutes of voice recognition per day they would need 
to double their datacenters

Architecture, Security and Specialization.
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Plucking Lemons
Can Architecture remove the low hanging 

Security fruit?

Matt Horsnell
Architecture Research Lead, Arm Research

ManyCore Summer School 2018
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Agenda

I’m going to attempt to talk about security from the perspective of a computer architect.

Let me make it clear up front, that I’m not a security “expert”.
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The Architecture is the interface contract between:

Hardware and the Software

Different layers of Software

Different components of Hardware 

For CPU architecture :

Software obeying the architected behaviours is portable across different hardware

Architecture defines what the hardware implementation must do
Micro-architecture defines how the hardware does it

Definition of “Architecture” ( in a computer science sense)
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An architecture doesn’t define everything

It only defines the timing independent functional behavior*

• which allows implementations the flexibility to design a micro-architecture that suits 
the required performance, power and area constraints of the target application.

Notably doesn’t define the timing of each instruction

• floating point multiply takes 3 cycles on cpu A, 7 on cpu B.

• floating point multiply of value 3.5 * 2.5 may take 3 cycles, 3.75 * 2.5 may take 10.

• the time taken for an address A to be loaded from memory can take 2 cycles if cached, 
it might take 10-200 cycles if it isn’t.
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Performance as a driver

Performance goal
• Lowest time to reach the result same as running the program in-order

Single-thread speed gains require getting more done per clock cycle
• Memory latency is slow and not improving much
• Clock rates are maxed out:  Pentium 4 reached 3.8 GHz in 2004

How to do more per clock?
• Reducing memory delays à Caches
• Working during delays à Speculative execution
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Reducing memory delays à Caches...

• Architecture advances only help performance when memory can “keep up” w/cores

• Hierarchy of caches added to exploit data’s temporal and spatial locality

Fast

Fast Slow
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Caches hold local (fast) copy of recently-accessed 64-byte chunks of memory

Caches for dummies...

MAIN 
MEMORY

Big, slow
e.g. 16GB SDRAM

Set Addr Cached Data ~64B
0 F0016280

31C6F4C0
339DD740
614F8480

B5 F5 80 21 E3 2C..
9A DA 59 11 48 F2..
C7 D7 A0 86 67 18..
17 4C 59 B8 58 A7..

1 71685100
132A4880
2A1C0700
C017E9C0

27 BD 5D 2E 84 29..
30 B2 8F 27 05 9C..
9E C3 DA EE B7 D9..
D1 76 16 54 51 5B..

2 311956C0
002D47C0
91507E80
55194040

0A 55 47 82 86 4E..
C4 15 4D 78 B5 C4..
60 D0 2C DD 78 14..
DF 66 E9 D0 11 43..

3 9B27F8C0
8E771100
A001FB40
317178C0

84 A0 7F C7 4E BC..
3B 0B 20 0C DB 58..
29 D9 F5 6A 72 50..
35 82 CB 91 78 8B..

4 6618E980
BA0CDB40
89E92C00
090F9C40

35 11 4A E0 2E F1..
B0 FC 5A 20 D0 7F..
1C 50 A4 F8 EB 6F..
BB 71 ED 16 07 1F..

Addr: 2A1C0700
Data: 9E C3 DA EE B7 D3..

Addr: 132E1340

Address:
132E1340

Data: AC 99 17 8F 44 09..

Addr: 132E1340
Data: AC 99 17 8F 44 09..

Fast

Slow

Fast

h(addr) 
to map 

to cache 
set

132E1340 Evict to make
room

AC 99 17 8F 44
09..

MEMORY 
CACHE

2A1C0700

Data:
AC 99 17 8F 44 09..

CPU
Sends address,
Receives data

Reads change system state:
• Next read to newly-cached

location is faster
• Next read to evicted

location is slower

**Animations from Paul Kocher
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Working during delays à Speculation...
Many steps (cycles) to execute one instruction; time flows left to right →   

add

Predict direction: target or fall thru

Go Faster: Pipelining, branch prediction, & instruction speculation

add

load

branch

and Speculate!

store Speculate more!

load

Speculation correct: Commit architectural changes of and (register) & store (memory) go fast!

Mis-speculate: Abort architectural changes (registers, memory); go in other branch direction   

**Animations from Mark Hill
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Speculative execution

if (uncached_value_usually_1 == 1)
foo()

Instead of idling, CPUs can guess likely program path and do speculative execution
ê Example:

ê Branch predictor: if() will probably be ‘true’ (based on prior history)
ê CPU starts foo() speculatively -- but doesn’t commit changes
ê When value arrives from memory, if() can be evaluated definitively -- check if guess was correct:
ê Correct: Commit speculative work – performance gain
ê Incorrect: Discard speculative work

But what happens if you put these two pieces of knowledge together in devious ways?

1. Cache state is observable through timing.... 

2. Speculative loads might perturb the cache state...
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Google Project Zero - Spectre/Meltdown

Google’s Project Zero team raised a major significant security threat

Affects all major CPU architectures, including x86, Power and Arm

Typical timing attack

Use controlled parts of higher privilege-only data to form an address

Fetch from this address into the cache

By timing analysis (data access time), determine the value of the privilege data

Demonstrated by Google as real implementations – dumping higher privilege data at kb/s
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Variant 1 (CVE-2017-5753): bypassing software 
checking of untrusted values

if (x < array1_size)
y = array2[array1[x]*512];

Assume code in kernel API, where unsigned int x comes from untrusted caller

Execution without speculation is safe
• CPU will not evaluate array2[array1[x]*512] unless x < array1_size

What about with speculative execution?
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Conditional branch (Variant 1) attack

Before attack:
ê Train branch predictor to expect if() is true

(e.g. call with x < array1_size)
ê Evict array1_size and array2[] from cache

if (x < array1_size)
y = array2[array1[x]*512];

Contents don’t matter

Memory & Cache Status
array1_size = 00000008

Memory at array1 base address:
8 bytes of data (value doesn’t matter)
[… lots of memory up to array1 base+N…] 
09 F1 98 CC 90...(something secret)

array2[ 0*512]
array2[ 1*512]
array2[ 2*512]
array2[ 3*512]
array2[ 4*512]
array2[ 5*512]
array2[ 6*512]
array2[ 7*512]
array2[ 8*512]
array2[ 9*512]
array2[10*512]
array2[11*512]

Uncached Cached

� � �

only care about cache status

**Animations from Paul Kocher
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Conditional branch (Variant 1) attack

Attacker calls victim with x=N (where N > 8)
ê Speculative exec while waiting for array1_size

ê Predict that if() is true
ê Read address (array1 base + x)  w/ out-of-bounds x
ê Read returns secret byte = 09 (fast – in cache)
ê Request memory at (array2 base + 09*512)
ê Brings array2[09*512] into the cache
ê Realize if() is false: discard speculative work

ê Finish operation & return to caller

Attacker measures read time for array2[i*512]
ê Read for i=09 is fast (cached), revealing secret byte
ê Repeat with many x (eg ~10KB/s)

if (x < array1_size)
y = array2[array1[x]*512];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base address:
8 bytes of data (value doesn’t matter)
[… lots of memory up to array1 base+N…] 
09 F1 98 CC 90...(something secret)

array2[ 0*512]
array2[ 1*512]
array2[ 2*512]
array2[ 3*512]
array2[ 4*512]
array2[ 5*512]
array2[ 6*512]
array2[ 7*512]
array2[ 8*512]
array2[ 9*512]
array2[10*512]
array2[11*512]

Uncached Cached

� � �

Contents don’t matter
only care about cache status
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Spectre visualized...

• Jason Lowepower (Professor @ UC Davis) recreated spectre in a gem5 out-of-order cpu, 
and visualized it bit.ly/gem5-spectre

https://t.co/mQJ0e41dGy
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**Diagrams from Jason Lowepower
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Variant 2 (CVE-2017-5715): forcing privileged 
speculation by training branch predictors
0x1000 ;EL2 code at 0x1000 loads a private key into x0

LDR x0, [address of a private key] ; On some uArch, a branch instruction might
; be required @0x1004 or after for this attack

;Somewhere else, EL2 code at address 0x2000, no relation to code at 0x1000
0x2000 MOV x0, x0, lsl#x2

LDR x3, [x0]

Attack

EL1 trains Branch Prediction to branch from 0x1004 to 0x2000 (and preloads L1 cache with known data)

EL2 starts execution and goes through code at 0x1000

Processor speculatively branches from 0x1004 to 0x2000

One cache line, which address is formed out of the “Key” is speculatively loaded into the cache – evicting data loaded by EL1

Same timing attack as Variant 1 is used.

A fix is to tag branch predictors entries with context, you then can’t train in Elx to make Elx+n jump to arbitrary locations.
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Variant 3 (CVE-2017-5754): using speculative reads of 
inaccessible data

;; Code executed at EL0
LDR x0, [some privileged location EL0 doesn’t have access to]
LDR x1, [x0],lsl #offset

Attack

EL0 tries to access a “key” in a privileged location – will get denied but gets speculatively executed

Second Load address formed out of the “key” – speculatively executed

cache line from the second speculative load allocated into the L1D, evicting data previously pre-loaded by EL0

Same timing attack concept as before

A CPU is immune to variant 3 if it cannot speculatively execute a load with address dependency on a previous load 
aborted

A software mitigation is by removing kernel mappings while at user level (small perf impact).
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ISSUE LSU RETIRE

LDR x0, [priv-addr]

LDR x1, [x0],lsl #offset

AGU

TLB LU

SEND LOAD

DATA to L1

ISSUE LSU RETIRE

AGU

TLB LU SEND LOAD

DATA to L1

simplified view...

** Hypothetical abstract machine
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Variant 3a (CVE-2017-5754): using speculative reads of 
inaccessible data
LDR X1, [X2] ; arranged to miss in the cache
CBZ X1, over ; This will be taken
MRS X3, TTBR0_EL1;
LSL X3, X3, #imm
AND X3, X3, #0xFC0
LDR X5, [X6,X3] ; X6 is an EL0 base address
over:

Very similar attack to variant 3 – disclosed by Arm.

Speculative read to an inaccessible control register e.g. TTBR0_EL1 which shouldn’t be accessible from EL0.

Using the same offset and perturb cache technique as other variants, can read value of higher privilege system register.
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Variant 4 (CVE-2018-3639): Speculative bypassing of 
stores by younger loads despite the presence of a 
dependency
In many modern high-performance processors

• a performance optimization is made whereby a load to an address will speculatively bypass an earlier store whose 
target address is not yet known by the hardware, but is actually the same as the address of the load. 

• When this happens, the load will speculatively read an earlier value of the data at that address than the value 
written by the store. 

• That speculatively loaded value can then be used for subsequent speculative memory accesses that will cause 
allocations into the cache, and the timing of those allocations can be used as an observation side-channel for the 
data values selected as an address.

STR x1, [x2] ; x2 is slow resolving...
...
LDR x3, [x4] ; x4 contains the same address as x2
<arbitrary data processing of x3>
LDR x5, [x6, x3]
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What can we do about these attacks?

• Mitigate with Architecture
• Target and prevent the speculation in code

• Fairly simple to prevent with new barriers

• ... but hard to ensure all code and all scenarios are covered

• Mitigate by switching off certain speculation (e.g. speculative store bypassing)
• heavy handed, a blunt instrument

• Mitigate with Micro-architecture
• Track, Taint and disallow state changes for certain speculative changes

• Requires intrusive micro-architecture

• ... but potentially over-pessimistic and a performance hit
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Architecture mitigation – speculation barriers

Arm announced 3 new speculation barriers to Armv8.4-A

CSDB Consumption of Speculative Data Barrier
is a memory barrier that controls speculative execution and data value prediction

SSBB Speculative Store Bypassing Barrier
is a memory barrier which prevents speculative loads from bypassing earlier stores 
to the same virtual address under certain conditions

PSSBB Physical Speculative Store Bypass Barrier
is a memory barrier which prevents speculative loads from bypassing earlier stores
to the same physical address.
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... but there’s more
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Attack scenarios
• user process attacks user

• intra-process sandbox escape (JavaScript, safe languages…)

• user process attacks special modes (SGX/TrustZone/SMM…)

• hypervisor guests attack each other/host

• remoteuser process attacks kernel/driver

• timing attack

• …

Speculation scenarios
ê conditional branch

ê indirect jump

ê return instruction
(e.g. Skylake w/ return stack buffer empty)

ê speculative store bypass

ê data speculation

ê …

Covert channels
ê Changes in cache state

[many variations]

ê Cache state on entry affects 
timing of later operations that use 
shared resources

ê Other digital (FPU, buffers…)

ê Analog (power, RF…)

ê …

Target CPUs
ê Arm

ê Intel

ê AMD

ê Power

ê Sparc
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Vulnerabilities vs Exploits 

The vulnerability is the ‘open door’ allowing the attacker in…

• There are many and they cannot all be found in lab conditions  

An exploit occurs when the attacker takes advantage of the vulnerability…   

• For profit, nuisance or warfare  
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You can’t “solve” security - but you can raise the bar

Attacker perspective:
Complexity à Bugs

Devices à Targets

Economic activity à $

Past: 
Performance dominated the economics of 

technology

Today: 
Cost of insecurity1 ($1012 - $1013)

>
Value of performance gains2 ($1011)

Technical challenges:
Architecting and implementing robust and 

resilient systems
1 “Estimating the Global Cost of Cyber Risk” (https://www.rand.org/pubs/research_reports/RR2299.html): $275B-$6.6T direct costs depending 

on assumptions, and $799B-$22.5T incl. indirect costs.

2 My estimate.  For reference, Intel’s entire 2017 revenues were $62.8B, ARM <$2B.

https://www.rand.org/pubs/research_reports/RR2299.html
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Apples and Oranges
Supporting Domain Specific Compute and 

Acceleration.

Matt Horsnell
Architecture Research Lead, Arm Research

ManyCore Summer School 2018
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Recap – general purpose performance is stalling ...

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer 
Architecture: A Quantitative Approach, 6/e. 2018 
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Recap - process and speculative techniques plateaued

1.5 1.0 0.68 0.50 0.35 0.25 0.18 0.13 0.09 0.065 0.045 0.032

Feature Size (um)

1

10000

1000

100

10 2 orders

<2 orders

*data sourced from http://cpudb.stanford.edu/

ITRS previously predicted shrinkage until at least 2028, but latest report 
shows feature size going flat. ITRS chair: “Some further scaling may be 
possible after transistors go vertical”.
source: spectrum.ieee.org/semiconductors/devices/transistors-could-stop-shrinking-in-2021
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1.7bn
2.1bn PC, Tablet

7.1bn 13.5bn Mobile
4.6bn 15.7bn

275bn 
IoT

2015 2025 2035

Recap – data is exploding and generating new applications

Connected Device Forecast Sensors will populate the world of the IoE

Source: softbank, based on data by Ericsson
Bandwidth source: cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-
index-vni/mobile-white-paper-c11-520862.html

Over 1 trillion IoT devices 
(accumulated in 2016-2035)

Source: itrs

1TB/s 145TB/s

3.3PB/s
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We thought the future was multi- and many-core

Amdahl’s Law can’t be ignored... ... embarassingly parallel code is still rare

* Eseilzadeh et el, ISCA’11* De Witt et el, Technical Report KU Leuven, July 2013.
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... and data is on our side, but how to process it?

Don’t forget Gustafson’s law ... and data hungry models 

*Deep learning scaling is predictable, empirically Hestness et al., arXiv, Dec.2017CC3.0 Peahihawaii

https://arxiv.org/abs/1712.00409
https://commons.wikimedia.org/w/index.php?title=User:Peahihawaii&action=edit&redlink=1
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... specialization is back in fashion

But not all the boats rise with the tide...

MultiAmdahl: Optimal Resource Allocation in Heterogeneous Architectures 
Yavits et. al – IEEE Comp. Arch. Letters. 13 (1) pg. 37-40.

... and gains come with loss of flexibility 

Extracted from: Scaling Machine Learning Performance with Moore’s Law.

Olukotun, Cadence Embedded NN Conference, Feb 2017.
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Specialization in multiple forms

• Domain specialization is compute bound to a given problem domain
e.g. Neural Networks, Image Signal Processing...

• Structural specialization is compute bound to common structures of work (see image)
e.g. Loop accelerators, Pointer chasing...

• Interfacing, integrating and connecting specialized compute is key to realizing its 
benefits.
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Specialization is a spectrum

Data types ISA TC accelerators Heterogeneity LC offload 
engines

systems

FP16
int8
Bfloat
HPA

AES/SHA
MPA
Atomics
(S)DOT

CCA
Co-processor

Homogeneous 
ISA
Fractal ISA

GPU
IPU
NPU
VPU

Embedded
Mobile
HPC

Revisit ideas outpaced by
Technology Improvements?

Approximate
Computing

by proxy

v8.0 v8.1 v8.2 v8.3 SVE

v8-A
number instructions
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Aside on Machine Learning

Machine Learning is a type of artificial intelligence that provides computers with the 
ability to learn without being explicitly programmed.

Useful when we don’t have algorithms, but do have lots of data

Speech Vision

ML is already exceeding 
human capability

Note: Created by SoftBank Group Corp. based on data by ImageNet, Microsoft and IBM.

MLML

HumanHuman
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Specialization – Data types

In ML precision and range important... ... goldrush of new non-IEEE types

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23
Bits stored

ConvNet LeNet
* Support present in some accelerators, no support for this in Arm ISA

fp16

fp32

bfloat16*

sign = 1
exponent = 5
mantissa = 10

sign = 1
exponent = 8
mantissa = 7

sign = 1
exponent = 8
mantissa = 23
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Specialization 

Complexity trade-offs 2x compute, 2x memory, 1.2% gain..
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Complexity vs. Accuracy

The difference between a Siberian Husky and an Alaskan Malamute

Philosophically what is accurate enough?
• Humans are fallible

Images from Wikipedia.



© 2018 Arm Limited 56

GEMMlowp operates on 8-bit integers
• Widely used in mobile inference

Widening within same sized element
• Multiply smaller components and accumulate into 4x wider lane 

(double-widened)
• Performance of int8 rather than int32

– 32 ops/cycle per 128-bit segment

Two variants are helpful
• vector x vector 
• vector x indexed-element

UDOT/SDOT introduced in Armv8.2, alongside 
support for half-precision FP.

Specialization – Dense widening: dot product

∑

x x x x

Source elements (4x8-bit ints)

Accumulator element (32-bit int)
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Specialization - Accelerators
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Embracing Specialization

• Arm interested in domain specific assist in the abstract as well

• Not just targeting deep algo/app specific research 

• More interested in meta questions it raises such as:

• What does it take to make it work? (full system of hw/sw)

• What can be generalized?

• What are the non-differentiating technical challenges?

• How do you make deployment easy?

• Will briefly look at two technologies

• DynamiQ – an Arm cluster with accelerator attach support.

• ACAI – a collaboration by Arm Research, University of Michigan and Xilinx.
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ACAI: Arm Coherent Accelerator Interface 
Framework for Integrating Hardware Accelerators

DAC 2018 | San Francisco, CA | June 24-28

Tutu Ajayi
Balaji Venu
Paul Hartke

ajayi@umich.edu
balaji.venu@arm.com
paul.hartke@xilinx.com
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ACAI: Motivation

• Massive accelerator adoption to keep up with performance demands

• Accelerator benchmark speedups are misleading without proper system integration

• Major challenges with accelerator integration:
• High engineering cost

– Hardware design and verification cost 

– Increased complexity in programming models and developing custom software (drivers, libs, etc.)

• High job dispatch overhead

• Security, isolation and protection concerns

• Job scheduling from multiple processes to multiple accelerators

ACAI Framework addresses these challenges
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ACAI: Main Idea
• Hardware and software framework to enable easy adoption of accelerators on SoC platforms

• Simpler programming model
• User application written in C/C++ runs on CPU - easier to debug & modify

• ACAI software libraries and drivers assist with job creation, scheduling and dispatch

• Support for accelerator virtualization (sharing across different processes)

• Easier hardware accelerator integration
• ACAI provides accelerator with cache coherency and virtual addressing capabilities

• Accelerator interfaces to ACAI using standard AXI protocol

• Compatible with Xilinx Vivado HLS (High-Level Synthesis) 

• User mode job dispatch
• Maximize performance gains and enable fine-grained task acceleration

Disclaimer: ACAI is a research project in collaboration with Arm. Made available to researchers/partners to understand 
market needs and collect feedback
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ACAI Framework - Logical Overview
CPU and accelerator are fully coherent and run in the same virtual addressing space

• User application written in C/C++ runs on 

CPU

• ACAI software libraries assist with job 

creation, scheduling and dispatch

• ACAI kernel driver sets up page tables and 

configures ACAI IP

• ACAI IP configures the accelerator, provides 

a cache and coherent memory interface

• User accelerator executes on user 

described job

FPGACPU

C/C++

Application

ACAI SW API

ACAI Kernel Driver

Linux OS

Cache Coherent Interconnect (CCI-400)

ACAI IP 

MMU L1/L2 $

Hardware 

Accelerator

Shared System Memory

AXI ACE AXI ACE

CFG Memory

Arm IPUser Code Platform Code/IP

Reduced accelerator dispatch time
• No explicit data copies
• No CPU flush/invalidate required
• Supports pointer dereferencing
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ACAI Component Interaction

Arm IPUser Code

Kernel M
ode

Device
User M

ode

C/C++ Application

ACAI SW API

ACAI Kernel Driver

ACAI IP MMU L1/L2 $

Hardware Accelerator

acai.init() acai.release() acai.start_job() acai.wait_job()

acai.release() job_complete()

ha_start ha_complete
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ACAI User Code Example
Setup and dispatch an FFT job on ACAI framework
void acai_hw_fft() {

// initialize acai
acai *p_acai = new acai();
p_acai->init();

// setup job chain with a single job
vector<acaijd> job_chain;
job_chain.reserve(1);

// setup job descriptor to write 3 registers
job_chain.push_back(acaijd(3, 0));
job_chain[0][0] = (uint32_t)length;
job_chain[0][1] = (uint32_t)src_data;
job_chain[0][2] = (uint32_t)result_data;

// start and wait on the job to complete
p_acai->start_job(job_chain[0]);
p_acai->wait_job(job_chain[0]);

// cpu reads results
p_acai->release();

};

module ha_fft (
input  wire clk,
input  wire reset_n,

// Memory access interface (AXI4 Master)
// ..

// Register Configuration interface (AXI4-Lite Slave)
// ..

input  wire ai_job_start_i,
output wire ai_job_complete_o

);
reg [31:0] length;
reg [31:0] src_addr;
reg [31:0] result_addr;

// more code

endmodule // ha_fft

Hardware Accelerator (Verilog)
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Main Memory

ACAI Job Scheduling

*ptr
Status Len (N)

Reg1
..

RegN

*ptr
Status Len (N)

Reg1
..

RegN

Hardware 
Accelerator

Job Slot 0
(Job0)Buffer

• Framework Schedules/Arbitrates requests from several threads to the same accelerator

arb

Job Slot 1
(Job1)Buffer

Job Slot 2
(Idle)

Buffer

Job Slot 3
(Idle)Buffer

*ptr
Status Len (N)

Reg1
..

RegN

Hardware*ptr
Status Len (N)

Reg1
..

RegN

*ptr
Status Len (N)

Reg1
..

RegN

CPU Process 1
2 Job Descriptors on a single chain

CPU Process 2
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Xilinx Prototype Platform
Supports Vivado HLS (High Level Synthesis)

ACAI IP 
MMU L1/L2 $

S_AXI_ACE_FPD

AXI_HA_MEM

Hardware Accelerator

S_AXI M_AXI

AXI_HA_CFG

Vivado Block Diagram - IP Usage

Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit
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ZCU102 Resource Utilization

ACAI IP Accelerator Misc

• Clk@100Mhz

• L1=32KB (BRAM)

• L2=512KB (BRAM)
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Benchmark Results
Hardware accelerator speedup over software implementations on CPU (A53 – single-core)

FFT Accelerator

• CPU implementation uses FFTW software 
libraries and Floating Point Unit (FPU) 

• FFT (1D-FFT single precision complex 
numbers) hardware accelerator 
implemented using Xilinx LogiCORE IP

RGB->YUV Accelerator

• Base version
• Hardware accelerator developed internally
• Executes in three stages: load, compute and store

• Pipelined version
• Developed using Vivado HLS
• Contains no explicit load/store stages
• Reduced overhead for chained or multiple jobs
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ACAI: Framework
• ACAI prototyped and benchmarked on 

Xilinx Zynq UltraScale+ MPSoC
(zcu102 evaluation board)

• Integrated FFT and RGB2->YUV 
accelerator behind ACAI

• FFT accelerator (4x – 10x)

• RGB->YUV accelerator (2x – 6x)

• Design Effort:

• ACAI IP effort - 1.8 man years

• Integrate an existing accelerator - 2 weeks

• Design and integrate HLS accelerator - 2 days

• More accelerators are being ported to 
the framework using Vivado HLS

FPGACPU

C/C++
Application

ACAI SW API

ACAI Kernel Driver

Linux OS

Cache Coherent Interconnect (CCI-400)

ACAI IP 

MMU L1/L2 $

Hardware 
Accelerator

Shared System Memory

AXI ACE AXI ACE

CFG Memory

Arm IPUser Code Platform Code/IP
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Summary

• ACAI presents an easier and more natural programming model

• Faster accelerator integration enables design space exploration and faster time to 
market

• Integrate accelerator in days/weeks
• ACAI in combination with Vivado HLS enables software/application developers to 

offload jobs onto accelerators easily
• ACAI can be used to model full system performance, implement SoC designs or 

integrate accelerators on FPGA platforms

• For more information, see us at the poster session or contact acai@arm.com

mailto:acai@arm.com
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DynamIQ
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DynamIQ – New Single Cluster Design

AMBA4 ACE or AMBA5 CHI

SCU

Shared L3 cacheACP

Cortex-A55
32b/64b CPU

Private L2 cache

Async BridgesPeripheral Port

Cortex-A75
32b/64b CPU

Private L2 cache

DynamIQ Shared Unit (DSU)

• New application processors

• Cortex-A75 and Cortex-A55 CPUs

• Built for DynamIQ technology

• Private L2 and shared L3 caches

• Local cache close to processors

• L3 cache shared between all cores

• DynamIQ shared unit

• Contains L3, Snoop Control Unit (SCU), and all cluster 
interfaces
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DynamIQ cluster

1 - 8 CPUsCPU0

Snoop 
filter

Power
Management

L3 
Cache

Bus
I/F

ACP and
peripheral

port I/F

CPU7

Asynchronous bridges

DynamIQ Shared Unit (DSU)

DynamIQ Shared Unit (DSU)

Streamlines 
traffic across 
bridges

Advanced power 
management 
features

Latency and bandwidth 
optimizations

Support for multiple 
performance domains

Scalable interfaces for edge to 
cloud applications

Supports large amounts 
of local memory

Low latency interfaces for 
closely coupled accelerators
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Level 3 cache memory system

New memory system for Cortex-A clusters
• 16-way set associative

• Configurable from 0KB to 4MB in size

• Up to 3.5x higher outstanding transactions

• L3 memory system can be partitioned
– Reduces the affects of cache thrashing in certain types of applications

– Important for markets such as infrastructure and automotive

• Integrated snoop filter to improve efficiency
– Capable of back invalidates and is sized automatically

DynamIQ cluster

1 - 8 CPUs

CPU0

Snoop 
filter

Power
Mngmt

L3 
Cache

Bus
I/F

ACP and
peripheral

port I/F

CPU7

Asynchronous bridges

DynamIQ Shared Unit (DSU)

L1 cache

L2 cache

L1 cache

L2 cache
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Innovations to increase throughput

Cache stashing enables reads/writes into the shared L3 cache 
or per-core L2 cache

• Allows closely coupled accelerators and I/O agents to gain access to 
CPU memory

• AMBA 5 CHI and Accelerator Coherency Port (ACP) can be used for 
cache stashing

More throughput with cache stashing
• In combination with the Peripheral Port (PP)

• Used for acceleration, network, storage use-cases

Critical data stays on-chip

• Low latency access by a CPU or group of CPUs

• Accelerator or I/O selects data placement

Accelerator
or I/O

CoreLink CMN-600

DMC-620 DMC-620

Agile System Cache

DDR4 DDR4

L3 Cache

L2 Cache

CPU
L2 Cache

CPU
L2 Cache

CPU
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Cortex-A

Agile System Cache
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CPU
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CPU
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CPU
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Cortex-A
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any cache level 

DynamIQ cluster
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Offload acceleration and I/O processing

Offload acceleration

Example application:

I/O processing

Example application:

DynamIQ cluster
Accelerator

(4) Writes result 
into CPU memory

(1) Configure 
registers for task

(2) Fetches data from 
CPU memory

(3) Carries out 
acceleration

ACP

PP

DynamIQ cluster
I/O agent

(4) Reads result from CPU 
memory

or sends data for onward 
processing

(3) Processing 
completed

(1) Writes data into 
CPU memory

(2) Carries out 
computation

ACP

PP
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Real time object 
detection



© 2018 Arm Limited 77

Real time object detection and tracking 

Best known approach is currently Covolutional Neural Networks (CNNs).

”YOLO” CNN architecture – can perform object detection in images in real-time.

• CNNs require large amounts of compute and memory.

• Real-time object detection difficult on mobile/IoT devices with contrained power and 
memory budgets

• Bandwidth, Power, Cost, Latency, Reliability and Privacy all motivating RT OD on mobile 
devices.

Euphrates: Algorithm-SoC Co-Design for Low-Power Mobile Continuous Vision 
Yuhao Zhu1, Anand Samajdar2, Matthew Mattina3, and Paul Whatmough4
1University of Rochester, 2Georgia Institute of Technology, 3Arm Research

https://arxiv.org/abs/1506.02640
https://arxiv.org/pdf/1803.11232.pdf
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Specialization – Algorithms
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End-to-End Continuous CV Pipeline

Pixel Processing Semantic Extraction 
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Exploiting Motion to Reduce OD and Tracking Power
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Algorithm-SoC Co-Design
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SCALE-Sim – NN Accelerator Simulator

NN accelerator research requires accurate modelling

• Power consumption, Latency, Circuit Area, Memory Bandwidth

SCALE-Sim was a collaboration with PhD student Ananda Samajdar (Georgia Tech)

• Allows anyone to easily generate metrics for any CNN model in Tensorflow

• Open-sourced, on github, MIT License.

• https://github.com/ARM-software/SCALE-Sim
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Some take-aways from this work

• Overcoming the energy-efficiency barrier required expansion of 
the research horizon from individual accelerator optimizations to 
a holistic co-design of multiple SoC components.

• Looking forward, as SoCs incorporate more specialized domain-
specific IPs, exploiting the synergies across them becomes ever 
more important.
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